This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360689 #6 Feb 24 2023 21:46:55 %S A360689 0,0,1,1,4,3,8,6,13,11,21,17,34,36,55,61,97,115,162,191,270,328,427, %T A360689 514,666,810,1027,1211,1530,1832,2260,2688,3342,3952,4824,5746,7010, %U A360689 8313,10116,11915,14436,17074,20536,24239,29053,34170,40747,47865,56830,66621 %N A360689 Number of integer partitions of n whose distinct parts have non-integer median. %C A360689 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %e A360689 The a(1) = 0 through a(9) = 13 partitions: %e A360689 . . (21) (211) (32) (411) (43) (332) (54) %e A360689 (41) (2211) (52) (611) (63) %e A360689 (221) (21111) (61) (22211) (72) %e A360689 (2111) (322) (41111) (81) %e A360689 (2221) (221111) (441) %e A360689 (4111) (2111111) (522) %e A360689 (22111) (3222) %e A360689 (211111) (6111) %e A360689 (22221) %e A360689 (222111) %e A360689 (411111) %e A360689 (2211111) %e A360689 (21111111) %e A360689 For example, the partition y = (5,3,3,2,1,1) has distinct parts {1,2,3,5}, with median 5/2, so y is counted under a(15). %t A360689 Table[Length[Select[IntegerPartitions[n],!IntegerQ[Median[Union[#]]]&]],{n,30}] %Y A360689 For not just distinct parts: A307683, complement A325347, ranks A359912. %Y A360689 These partitions have ranks A360551. %Y A360689 The complement is counted by A360686, strict A359907, ranks A360550. %Y A360689 For multiplicities instead of distinct parts we have A360690, ranks A360554. %Y A360689 A000041 counts integer partitions, strict A000009. %Y A360689 A116608 counts partitions by number of distinct parts. %Y A360689 A359893 and A359901 count partitions by median, odd-length A359902. %Y A360689 A360457 gives median of distinct prime indices (times 2). %Y A360689 Cf. A000975, A027193, A090794, A240219, A349156, A360005, A360071, A360241, A360244, A360245. %K A360689 nonn %O A360689 1,5 %A A360689 _Gus Wiseman_, Feb 22 2023