A360690 Number of integer partitions of n with non-integer median of multiplicities.
0, 0, 0, 1, 2, 2, 5, 6, 8, 8, 14, 12, 21, 20, 31, 36, 57, 61, 94, 108, 157, 188, 261, 305, 409, 484, 632, 721, 942, 1083, 1376, 1585, 2004, 2302, 2860, 3304, 4103, 4742, 5849, 6745, 8281, 9599, 11706, 13605, 16481, 19176, 23078, 26838, 32145, 37387, 44465
Offset: 1
Keywords
Examples
The a(1) = 0 through a(9) = 8 partitions: . . . (211) (221) (411) (322) (332) (441) (311) (21111) (331) (422) (522) (511) (611) (711) (22111) (22211) (22221) (31111) (41111) (33111) (2111111) (51111) (2211111) (3111111) For example, the partition y = (3,2,2,1) has multiplicities (1,2,1), and the multiset {1,1,2} has median 1, so y is not counted under a(8).
Crossrefs
These partitions have ranks A360554.
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], !IntegerQ[Median[Length/@Split[#]]]&]],{n,30}]
Comments