This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360694 #74 Mar 21 2023 18:07:47 %S A360694 4,6,8,10,12,14,15,16,18,20,21,22,24,26,27,28,30,32,33,34,35,36,38,39, %T A360694 40,42,44,45,48,52,54,55,56,57,58,60,63,65,66,68,69,70,72,75,76,77,78, %U A360694 80,82,84,85,86,88,90,92,93,94,95,96,99,102,104,105,106,108,110,111,112,114,115 %N A360694 Numbers whose divisors can be partitioned into two disjoint sets where the sum of both sets is prime. %C A360694 The concept of this sequence is similar to the concept of Zumkeller numbers (A083207) partitioning the sums of the divisors (A000203) into two sets. %C A360694 This concept can be extended, since the sums of some numbers' divisors can be partitioned into more sets, e.g., 6 (2,3,7) and 10 (2,5,11) into three. %C A360694 Some numbers can be divided more than one way. For 10, there are two divisons: (5,13) and (7,11) and for 20, there are four: (5,37), (11,31), (13,29) and (19,23). %C A360694 From _Robert Israel_, Feb 21 2023: (Start) %C A360694 Contains no primes. %C A360694 k in A028982 is in the sequence iff k is even and A000203(k)-2 is prime. %C A360694 (End) %D A360694 Song Y. Yan, Perfect, Amicable and Sociable Numbers, World Scientific Pub Co Inc., 1996, p. 11, p. 22. %H A360694 Yuejian Peng and K. P. S. Bhaskara Rao, <a href="https://doi.org/10.1016/j.jnt.2012.09.020">On Zumkeller numbers</a>, Journal of Number Theory, Volume 133, Issue 4, April 2013, pp. 1135-1155 %H A360694 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PerfectNumber.html">Perfect Number</a>. %H A360694 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Prime.html">Prime</a>. %e A360694 4 belongs to the sequence, since its divisors can be partitioned into two sets where the sums of these sets are primes (2,5). 9 does not belong to the sequence, because its divisors cannot be partitioned in this way. %p A360694 filter:= proc(n) local P,p,S,s; %p A360694 S:= numtheory:-divisors(n); s:= convert(S,`+`); %p A360694 P:= combinat:-subsets(S minus {n}); %p A360694 while not P[finished] do %p A360694 p:= convert(P[nextvalue](),`+`); %p A360694 if isprime(p) and isprime(s-p) then return true fi %p A360694 od; %p A360694 false %p A360694 end proc: %p A360694 select(filter, [$1..200]); # _Robert Israel_, Feb 21 2023 %t A360694 q[n_] := Module[{d = Divisors[n], s, p}, s = Total[d]; p = Position[Rest @ CoefficientList[Product[1 + x^i, {i, d}], x], _?(# > 0 &)] // Flatten; AnyTrue[p, PrimeQ[#] && PrimeQ[s - #] &]]; Select[Range[100], q] (* _Amiram Eldar_, Feb 18 2023 *) %Y A360694 Cf. A000040, A000396, A028982, A083207, A000203. %K A360694 nonn %O A360694 1,1 %A A360694 _Zoltan Galantai_, Feb 17 2023