A363967 Numbers whose divisors can be partitioned into two disjoint sets whose both sums are squares.
1, 3, 9, 22, 27, 30, 40, 63, 66, 70, 81, 88, 90, 94, 115, 119, 120, 138, 153, 156, 170, 171, 174, 184, 189, 190, 198, 210, 214, 217, 232, 264, 265, 270, 280, 282, 310, 318, 322, 323, 343, 345, 357, 360, 364, 376, 382, 385, 399, 400, 414, 416, 462, 468, 472, 495, 497
Offset: 1
Keywords
Examples
9 is a term since its divisors, {1, 3, 9}, can be partitioned into the two disjoint sets, {1, 3} and {9}, whose sums, 1 + 3 = 4 = 2^2 and 9 = 3^2, are both squares.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
sqQ[n_] := IntegerQ[Sqrt[n]]; q[n_] := Module[{d = Divisors[n], s, p}, s = Total[d]; p = Position[Rest @ CoefficientList[Product[1 + x^i, {i, d}], x], _?(# > 0 &)] // Flatten; AnyTrue[p, sqQ[#] && sqQ[s - #] &]]; Select[Range[500], q]
Comments