cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A363967 Numbers whose divisors can be partitioned into two disjoint sets whose both sums are squares.

Original entry on oeis.org

1, 3, 9, 22, 27, 30, 40, 63, 66, 70, 81, 88, 90, 94, 115, 119, 120, 138, 153, 156, 170, 171, 174, 184, 189, 190, 198, 210, 214, 217, 232, 264, 265, 270, 280, 282, 310, 318, 322, 323, 343, 345, 357, 360, 364, 376, 382, 385, 399, 400, 414, 416, 462, 468, 472, 495, 497
Offset: 1

Views

Author

Amiram Eldar, Jun 30 2023

Keywords

Comments

If one of the two sets is empty then the term is a number whose sum of divisors is a square (A006532).
If k is a number such that (6*k)^2 is the sum of a twin prime pair (A037073), then (18*k^2)^2 - 1 is a term.
3 is the only prime term.

Examples

			9 is a term since its divisors, {1, 3, 9}, can be partitioned into the two disjoint sets, {1, 3} and {9}, whose sums, 1 + 3 = 4 = 2^2 and 9 = 3^2, are both squares.
		

Crossrefs

Subsequence of A333911.
A006532 is a subsequence.
Similar sequences: A333677, A360694.

Programs

  • Mathematica
    sqQ[n_] := IntegerQ[Sqrt[n]]; q[n_] := Module[{d = Divisors[n], s, p}, s = Total[d]; p = Position[Rest @ CoefficientList[Product[1 + x^i, {i, d}], x], _?(# > 0 &)] // Flatten; AnyTrue[p, sqQ[#] && sqQ[s - #] &]]; Select[Range[500], q]
Showing 1-1 of 1 results.