A360697 The sum of the squares of the digits of n, repeated until reaching a single-digit number.
0, 1, 4, 9, 4, 4, 4, 1, 4, 4, 1, 2, 5, 1, 4, 4, 4, 4, 4, 1, 4, 5, 8, 1, 4, 4, 4, 4, 1, 4, 9, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 4, 1, 4, 4, 4, 4, 4, 4, 4, 2, 1, 4, 4, 1, 4, 4, 4, 1, 2, 4, 4, 4, 1, 4, 4, 1, 4, 4, 1, 4, 4, 1
Offset: 0
Examples
For n=28, the sum of the squares of the digits gives 4+64 = 68. Repeating the process gives 36+64 = 100; repeating once more gives 1+0+0 = 1. Therefore a(28) is 1. a(n) = 4 for 72 of the first 100 n (0 to 99 inclusive.)
Programs
-
Mathematica
f[n_] := Plus @@ (IntegerDigits[n]^2); a[n_] := NestWhile[f, f[n], # > 9 &]; Array[a, 100, 0] (* Amiram Eldar, Feb 17 2023 *)
Comments