cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360702 Number of sets of 2n words of length 2n over binary alphabet where each letter occurs 2n^2 times.

This page as a plain text file.
%I A360702 #22 Feb 19 2023 02:40:17
%S A360702 1,2,394,10247250,41192135957378,26708408307353573010350,
%T A360702 3044454667114388718324075325130428,
%U A360702 65233919825974729088553743803268484284650384722,275236371094876077407367002758415347571615535684540339803854604
%N A360702 Number of sets of 2n words of length 2n over binary alphabet where each letter occurs 2n^2 times.
%C A360702 Also the number of inequivalent 2n X 2n {0,1} matrices with distinct rows and equal numbers of 0's and 1's, modulo permutation of the rows. a(1) = 2: [00/11], [01/10].
%H A360702 Alois P. Heinz, <a href="/A360702/b360702.txt">Table of n, a(n) for n = 0..30</a>
%F A360702 a(n) = A360693(2n,2n^2).
%e A360702 a(0) = 1: {}.
%e A360702 a(1) = 2: {aa,bb}, {ab,ba}.
%p A360702 g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
%p A360702       g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i), k), k=0..j))))
%p A360702     end:
%p A360702 a:= n-> coeff(g(2*n$3), x, 2*n^2):
%p A360702 seq(a(n), n=0..10);
%Y A360702 Cf. A001105, A360693.
%K A360702 nonn
%O A360702 0,2
%A A360702 _Alois P. Heinz_, Feb 16 2023