This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360703 #26 Jan 09 2025 13:04:40 %S A360703 1,3,9,27,67,187,129,43,41,121,17,37,97,277,677,1877,1297,199,133,111, %T A360703 113,119,139,339,313,311,331,131,191,193,393,333,399,999,933,911,913, %U A360703 919,319,357,157,57,19,13,11,31,33,39,99,93,91,271,273,279,679,673,671,1871,1291,197,137,117,151,51,53,59,159,153 %N A360703 Starting from 1, successively take the smallest "Choix de Bruxelles" with factor 3 which is not already in the sequence. %C A360703 At a given term t, the Choix de Bruxelles with factor 3 can choose to multiply any decimal digit substring (not starting 0) of t by 3 or divide by 3 if that substring is divisible by 3. %C A360703 These choices on substrings give various possible next values and here take the smallest not yet in the sequence. %C A360703 The sequence can be finite if the only choices we have are already in the sequence, but this has not been found in the first 1125299 terms. %H A360703 Alon Vinkler, <a href="/A360703/b360703.txt">Table of n, a(n) for n = 0..10000</a> %H A360703 Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane, <a href="http://arxiv.org/abs/1902.01444">"Choix de Bruxelles": A New Operation on Positive Integers</a>, arXiv:1902.01444 [math.NT], Feb 2019; Fib. Quart. 57:3 (2019), 195-200. %H A360703 Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane,, <a href="/A307635/a307635.pdf">"Choix de Bruxelles": A New Operation on Positive Integers</a>, Local copy. %H A360703 Alon Vinkler, <a href="/A360703/a360703_1.txt">C# Program</a> %e A360703 Below, square brackets [] represent multiplication by 3(e.g., [4] = 12); curly brackets {} represent division by 3 (e.g., {6} = 2); digits outside the brackets are not affected by the multiplication or division (e.g., 1[3] = 19 and 1{18} = 16). %e A360703 We begin with 1 and, at each step, we go to the smallest number possible that hasn't yet appeared in the sequence: %e A360703 1 --> [1] = 3 %e A360703 3 --> [3] = 9 %e A360703 9 --> [9]= 27 %e A360703 27--> [2]7 = 67 %e A360703 67--> [6]7= 187 %e A360703 187 --> 1{87}=129 %e A360703 129 --> {129} = 43 %e A360703 ... and so on. %o A360703 (C#) // See Links %Y A360703 Cf. A323286, A358708, A360190. %K A360703 nonn,base %O A360703 0,2 %A A360703 _Alon Vinkler_, Feb 16 2023