cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360720 a(n) is the sum of unitary divisors of n that are powerful (A001694).

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 9, 10, 1, 1, 5, 1, 1, 1, 17, 1, 10, 1, 5, 1, 1, 1, 9, 26, 1, 28, 5, 1, 1, 1, 33, 1, 1, 1, 50, 1, 1, 1, 9, 1, 1, 1, 5, 10, 1, 1, 17, 50, 26, 1, 5, 1, 28, 1, 9, 1, 1, 1, 5, 1, 1, 10, 65, 1, 1, 1, 5, 1, 1, 1, 90, 1, 1, 26, 5, 1, 1, 1, 17, 82
Offset: 1

Views

Author

Amiram Eldar, Feb 18 2023

Keywords

Comments

The number of these divisors is given by A323308.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, p^e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, 1, f[i, 1]^f[i, 2] + 1));}
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - p^3*X^4 - p^2*X^3 + p^3*X^3) / ((1 - X) * (1 - p^2*X^2)))[n], ", ")) \\ Vaclav Kotesovec, Feb 18 2023

Formula

Multiplicative with a(p) = 1 and a(p^e) = p^e + 1 for e > 1.
a(n) <= A034448(n), with equality if and only if n is powerful (A001694).
a(n) <= A183097(n), with equality if and only if n is cubefree (A004709).
Dirichlet g.f.: zeta(s)*zeta(s-1)*Product_{p prime} (1 - p^(1-s) + p^(2-2*s) - p^(2-3*s)).
From Vaclav Kotesovec, Feb 18 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{primes p} (1 - p^(3-4*s) - p^(2-3*s) + p^(3-3*s)).
Sum_{k=1..n} a(k) ~ c * zeta(3/2) * n^(3/2) / 3, where c = Product_{primes p} (1 + 1/p^(3/2) - 1/p^(5/2) - 1/p^3) = 1.48039182258752809541724060173644... (End)
a(n) = A034448(A057521(n)) (the sum of unitary divisors of the powerful part of n). - Amiram Eldar, Dec 12 2023
a(n) = A034448(n)/A092261(n). - Amiram Eldar, Jun 19 2025