This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360721 #11 May 21 2025 03:21:16 %S A360721 1,1,1,2,1,1,1,3,2,1,1,2,1,1,1,2,1,2,1,2,1,1,1,3,2,1,3,2,1,1,1,3,1,1, %T A360721 1,4,1,1,1,3,1,1,1,2,2,1,1,2,2,2,1,2,1,3,1,3,1,1,1,2,1,1,2,4,1,1,1,2, %U A360721 1,1,1,6,1,1,2,2,1,1,1,2,2,1,1,2,1,1,1 %N A360721 a(n) is the number of infinitary divisors of n that are powerful (A001694). %H A360721 Amiram Eldar, <a href="/A360721/b360721.txt">Table of n, a(n) for n = 1..10000</a> %H A360721 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>. %H A360721 <a href="/index/Di#divisors">Index entries for sequences related to divisors of numbers</a>. %F A360721 Multiplicative with a(p^e) = 2^A000120(e) - (e mod 2). %F A360721 a(n) <= A037445(n) with equality if and only if n is a square. %F A360721 a(n) <= A005361(n) with equality if and only if n is not in A360723. %F A360721 Sum_{k=1..n} a(k) ~ c * n, where c = Product_{p prime} ((1-1/p) * Sum_{k>=1} ((2^A000120(k)- k mod 2)/p^k)) = 1.72717... . %t A360721 f[p_, e_] := 2^DigitCount[e, 2, 1] - Mod[e, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] %o A360721 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, 2^hammingweight(f[i, 2]) - f[i, 2]%2);} %Y A360721 Cf. A000120, A001694, A037445, A077609, A360723. %Y A360721 Similar sequences: A005361 (number of powerful divisors), A323308 (number of unitary powerful divisors). %K A360721 nonn,mult,easy %O A360721 1,4 %A A360721 _Amiram Eldar_, Feb 18 2023