cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A368105 The number of bi-unitary divisors of n that are powerful (A001694).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 12 2023

Keywords

Comments

First differs from A095691 and A365552 at n = 32.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 2 || OddQ[e], e, e -1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2 || x == 2, x, x-1), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = e if e = 2 or e is odd, and e-1 otherwise.
a(n) >= 1, with equality if and only if n is squarefree (A005117).
a(n) <= A286324(n), with equality if and only if n equals the square of a squarefree number (A062503).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2) * Product_{p prime} (1 + 1/p^3 - 1/p^4 + 1/p^5) = 1.87133814920590891161... .

A360723 Numbers that have at least one exponent in their canonical prime factorization that is neither 2 nor of the form 2^k-1, k>=1.

Original entry on oeis.org

16, 32, 48, 64, 80, 81, 96, 112, 144, 160, 162, 176, 192, 208, 224, 240, 243, 256, 272, 288, 304, 320, 324, 336, 352, 368, 400, 405, 416, 432, 448, 464, 480, 486, 496, 512, 528, 544, 560, 567, 576, 592, 608, 624, 625, 648, 656, 672, 688, 704, 720, 729, 736, 752
Offset: 1

Views

Author

Amiram Eldar, Feb 18 2023

Keywords

Comments

Numbers that have at least one powerful divisor that is not infinitary divisor, i.e., numbers k such that A360721(k) < A005361(k).
The complement of this sequence is the sequence of numbers all of whose powerful divisors are also infinitary divisors. The related sequence of numbers all of whose infinitary divisors are powerful is the sequence of squares (A000290).
The asymptotic density of this sequence is 1 - Product_{p prime} ((1 - 1/p) * (1 + 1/p^2 + Sum_{i>=1} 1/p^(2^i-1))) = 0.071899867098952952524... .

Crossrefs

Programs

  • Mathematica
    q[n_] := AnyTrue[FactorInteger[n][[;; , 2]], # != 2 && # + 1 != 2^IntegerExponent[# + 1, 2] &]; Select[Range[1000], q]
  • PARI
    is(n) = {my(e = factor(n)[, 2]); for(i = 1, #e, if(e[i] != 2 && (e[i]+1)>>valuation(e[i]+1, 2) != 1, return(1))); 0;}

A360722 a(n) is the sum of infinitary divisors of n that are powerful (A001694).

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 13, 10, 1, 1, 5, 1, 1, 1, 17, 1, 10, 1, 5, 1, 1, 1, 13, 26, 1, 37, 5, 1, 1, 1, 49, 1, 1, 1, 50, 1, 1, 1, 13, 1, 1, 1, 5, 10, 1, 1, 17, 50, 26, 1, 5, 1, 37, 1, 13, 1, 1, 1, 5, 1, 1, 10, 85, 1, 1, 1, 5, 1, 1, 1, 130, 1, 1, 26, 5, 1, 1, 1, 17
Offset: 1

Views

Author

Amiram Eldar, Feb 18 2023

Keywords

Crossrefs

Similar sequences: A183097, A360721.

Programs

  • Mathematica
    f[p_, e_] := Times @@ (p^(2^(-1 + Flatten @ Position[Reverse@IntegerDigits[e, 2], ?(# == 1 &)])) + 1) - If[OddQ[e], p, 0]; a[1] = 1; a[n] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], f[i, 1]^(2^(#b-k))+1, 1)) - if(f[i, 2]%2, f[i, 1], 0));}

Formula

Multiplicative with a(p^e) = f(p, e) if e is even, and f(p, e) - p is e is odd, where f(p, e) = Product{k>=1, e_k=1} (p^(2^k) + 1), where e = Sum_{k} e_k * 2^k is the binary representation of e, i.e., e_k is bit k of e.
a(n) <= A049417(n), with equality if and only if n is a square.
a(n) <= A183097(n), with equality if and only if n is not in A360723.

A377709 Numbers that have a record number of infinitary divisors that are powerful (A001694).

Original entry on oeis.org

1, 4, 8, 36, 72, 128, 216, 1152, 3456, 27000, 28800, 86400, 279936, 432000, 4233600, 6998400, 21168000, 34992000, 148176000, 342921600, 1714608000, 8957952000, 12002256000, 197222256000, 207467568000, 438939648000, 1071630000000, 1452272976000, 3072577536000, 7501410000000
Offset: 1

Views

Author

Amiram Eldar, Nov 04 2024

Keywords

Comments

Indices of records in A360721.
The corresponding record values are 1, 2, 3, 4, 6, 7, 9, 14, 21, 27, 28, 42, 49, 63, 84, 98, ... (see the link for more values).

Crossrefs

Subsequence of A025487.

Programs

  • Mathematica
    f[p_, e_] := 2^DigitCount[e, 2, 1] - Mod[e, 2]; d[1] = 1; d[n_] := Times @@ f @@@ FactorInteger[n]; v = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]; seq = {}; dm = 0; Do[If[(dk = d[v[[k]]]) > dm, dm = dk; AppendTo[seq, v[[k]]]], {k, 1, Length[v]}]; seq
Showing 1-4 of 4 results.