This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360746 #19 Mar 05 2023 11:37:36 %S A360746 1,1,2,3,4,4,5,5,5,7,8,8,8,9,9,12,10,10,12,10,12,13,13,13,16,14,14,16, %T A360746 17,17,17,18,18,24,25,25,25,26,27,27,27,27,28,28,30,28,33,28,29,30,30, %U A360746 30,33,31,31,31,32,32,33,33,31,31,32,33,33,35,33,37 %N A360746 a(n) is the maximum number of locations 1..n-1 which can be reached starting from a(n-1), where jumps from location i to i +- a(i) are permitted (within 1..n-1); a(1)=1. See example. %H A360746 Rémy Sigrist, <a href="/A360746/b360746.txt">Table of n, a(n) for n = 1..10000</a> %H A360746 Rémy Sigrist, <a href="/A360746/a360746.gp.txt">PARI program</a> %e A360746 a(7)=5 because we reach 5 terms starting from the most recent term a(6) (each line shows the next unvisited term(s) we can reach from the term(s) in the previous iteration): %e A360746 1, 1, 2, 3, 4, 4 %e A360746 1<----------4 %e A360746 1, 1, 2, 3, 4, 4 %e A360746 1<-1->2 %e A360746 1, 1, 2, 3, 4, 4 %e A360746 2---->4 %e A360746 From the last iteration we can visit no new terms. We reached 5 terms, so a(7)=5: %e A360746 1, 1, 2, 3, 4, 4 %e A360746 1 1 2 4 4 %o A360746 (Python) %o A360746 def A(lastn,mode=0): %o A360746 a,n,t=[1],0,1 %o A360746 while n<lastn: %o A360746 d, g, r, rr=[[n]], 0, 0, [n] %o A360746 while len(d)>0: %o A360746 if not d[-1][-1] in rr:rr.append(d[-1][-1]) %o A360746 if d[-1][-1]-a[d[-1][-1]]>=0: %o A360746 if d[-1].count(d[-1][-1]-a[d[-1][-1]])<t:g=1 %o A360746 if d[-1][-1]+a[d[-1][-1]]<=n: %o A360746 if d[-1].count(d[-1][-1]+a[d[-1][-1]])<t: %o A360746 if g>0: d.append(d[-1][:]) %o A360746 d[-1].append(d[-1][-1]+a[d[-1][-1]]) %o A360746 r=1 %o A360746 if g>0: %o A360746 if r>0: d[-2].append(d[-2][-1]-a[d[-2][-1]]) %o A360746 else: d[-1].append(d[-1][-1]-a[d[-1][-1]]) %o A360746 r=1 %o A360746 if r==0:d.pop() %o A360746 r,g=0,0 %o A360746 a.append(len(rr)) %o A360746 n+=1 %o A360746 print(n+1,a[n]) %o A360746 if mode>0: print(a) %o A360746 return a # _S. Brunner_, Feb 26 2023 %o A360746 (PARI) See Links section. %Y A360746 Cf. A360744, A360745, A360593, A360594, A360595, A359005, A358838, A359008. %K A360746 nonn %O A360746 1,3 %A A360746 _Neal Gersh Tolunsky_, Feb 18 2023