cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360756 Expansion of Sum_{k>0} (x * (1 + 2 * x^k))^k.

This page as a plain text file.
%I A360756 #14 Aug 02 2023 02:00:37
%S A360756 1,3,1,5,1,11,1,9,13,11,1,45,1,15,41,49,1,79,1,117,85,23,1,297,81,27,
%T A360756 145,309,1,483,1,481,221,35,561,1165,1,39,313,2121,1,1143,1,1365,2437,
%U A360756 47,1,4081,449,3411,545,2341,1,4699,5281,4889,685,59,1,20445,1,63,6217
%N A360756 Expansion of Sum_{k>0} (x * (1 + 2 * x^k))^k.
%F A360756 a(n) = Sum_{d|n} 2^(n/d-1) * binomial(d,n/d-1).
%F A360756 If p is an odd prime, a(p) = 1.
%t A360756 a[n_] := DivisorSum[n, 2^(n/# - 1) * Binomial[#, n/# - 1] &]; Array[a, 60] (* _Amiram Eldar_, Aug 02 2023 *)
%o A360756 (PARI) my(N=70, x='x+O('x^N)); Vec(sum(k=1, N, (x*(1+2*x^k))^k))
%o A360756 (PARI) a(n) = sumdiv(n, d, 2^(n/d-1)*binomial(d, n/d-1));
%Y A360756 Cf. A327249, A360755.
%K A360756 nonn
%O A360756 1,2
%A A360756 _Seiichi Manyama_, Feb 19 2023