This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360761 #23 Feb 24 2023 19:32:27 %S A360761 31,601,2593,20478961,204700049,668731841 %N A360761 Primes p that divide both 3^k-2 and 5^k-1 for some k. %C A360761 If prime p divides 3^k-2 and 5^k-1, then p divides 3^j-2 and 5^j-1 for all j such that j == k (mod p-1). %C A360761 Primes p such that the equation 3^(x*A070677(p)) == 2 (mod p) has a solution. %C A360761 Values of k: 24, 108, 64, 376020, 67141466, 487515840, ... - _Chai Wah Wu_, Feb 24 2023 %e A360761 a(3) = 2593 is a term because 2593 is prime, 3^64 == 2 (mod 2593) and 5^64 == 1 (mod 2593). %p A360761 R:= NULL: count:= 0: p:= 5: with(numtheory): %p A360761 while count < 4 do %p A360761 p:= nextprime(p); %p A360761 if mlog(2,3 &^ order(5,p) mod p, p) <> FAIL then R:= R,p; count:= count+1 fi %p A360761 od: %p A360761 R; %o A360761 (Python) %o A360761 from itertools import islice %o A360761 from sympy import discrete_log, nextprime, n_order %o A360761 def A360761_gen(): # generator of terms %o A360761 p = 5 %o A360761 while True: %o A360761 try: %o A360761 discrete_log(p:=nextprime(p),2,pow(3,n_order(5,p),p)) %o A360761 except: %o A360761 continue %o A360761 yield p %o A360761 A360761_list = list(islice(A360761_gen(),4)) # _Chai Wah Wu_, Feb 23 2023 %Y A360761 Cf. A070677. %K A360761 nonn,more %O A360761 1,1 %A A360761 _Robert Israel_, Feb 19 2023 %E A360761 a(5)-a(6) from _Chai Wah Wu_, Feb 23 2023