This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360773 #5 Feb 20 2023 08:21:22 %S A360773 0,1,8,1024,620448 %N A360773 Number of ways to tile a 2n X 2n square using rectangles with distinct dimensions such that the sum of the rectangles perimeters equals the area of the square. %C A360773 All possible tilings are counted, including those identical by symmetry. Note that distinct dimensions means that, for example, a 1 x 3 rectangle can only be used once, regardless of if it lies horizontally or vertically. %C A360773 Only squares with even edges lengths are possible since the area of a square with odd edge lengths is odd, while the perimeter of any rectangle is even. %e A360773 a(1) = 0 as a 2 x 2 square, with area 4, cannot be tiled with distinct rectangles with perimeters that sum to 4. %e A360773 a(2) = 1 as a 4 x 4 rectangle, with area 16, can be tiled with a 4 x 4 square with perimeter 4 + 4 + 4 + 4 = 16. %e A360773 a(3) = 8. The possible tilings for the 6 x 6 square, with area 36, excluding those equivalent by symmetry, are: %e A360773 . %e A360773 +---+---+---+---+---+---+ +---+---+---+---+---+---+ %e A360773 | | | | %e A360773 +---+---+---+---+---+---+ + + %e A360773 | | | | %e A360773 + + +---+---+---+---+---+---+ %e A360773 | | | | %e A360773 + + + + %e A360773 | | | | %e A360773 + + + + %e A360773 | | | | %e A360773 + + + + %e A360773 | | | | %e A360773 +---+---+---+---+---+---+ +---+---+---+---+---+---+ %e A360773 . %e A360773 where for the first tiling (2*6 + 2*1) + (2*6 + 2*5) = 36 while for the second tiling (2*6 + 2*2) + (2*6 + 2*4) = 36. Both of these tilings can occur in 4 ways, giving 8 ways in total. %e A360773 a(4) = 1024. And example tiling of the 8 x 8 square, with area 64, is: %e A360773 . %e A360773 +---+---+---+---+---+---+---+---+ %e A360773 | | | | %e A360773 + + +---+---+ %e A360773 | | | | %e A360773 + + + + %e A360773 | | | | %e A360773 +---+---+---+---+---+---+---+---+ %e A360773 | | %e A360773 + + %e A360773 | | %e A360773 + + %e A360773 | | %e A360773 + + %e A360773 | | %e A360773 + + %e A360773 | | %e A360773 +---+---+---+---+---+---+---+---+ %e A360773 . %e A360773 where (2*1 + 2*3) + (2*5 + 2*3) + (2*2 + 2*1) + (2*2 + 2*2) + (2*8 + 2*5) = 64. %Y A360773 Cf. A360499, A360498, A360725, A360256, A182275, A004003, A099390, A065072. %K A360773 nonn,more %O A360773 1,3 %A A360773 _Scott R. Shannon_ and _N. J. A. Sloane_, Feb 20 2023