This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360784 #15 Nov 21 2023 08:39:34 %S A360784 1,1,3,8,18,39,86,175,352,688,1318,2472,4576,8322,14959,26560,46657, %T A360784 81130,139866,239047,405496,682891,1142466,1899344,3139432,5160455, %U A360784 8438871,13732292,22242647,35867937,57597730,92121145,146775205,232998683,368579188,581091003 %N A360784 Number of multisets of nonempty strict integer partitions with a total of n parts and total sum of 2n. %H A360784 Alois P. Heinz, <a href="/A360784/b360784.txt">Table of n, a(n) for n = 0..450</a> %F A360784 a(n) = A360763(2n,n). %e A360784 a(3) = 8: {[1,2,3]}, {[1],[1,4]}, {[1],[2,3]}, {[2],[1,3]}, {[3],[1,2]}, {[1],[1],[4]}, {[1],[2],[3]}, {[2],[2],[2]}. %p A360784 h:= proc(n, i) option remember; expand(`if`(n=0, 1, %p A360784 `if`(i<1, 0, h(n, i-1)+x*h(n-i, min(n-i, i-1))))) %p A360784 end: %p A360784 g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add( %p A360784 g(n, i-1, j-k)*x^(i*k)*binomial(coeff(h(n$2), x, i)+k-1, k), k=0..j)))) %p A360784 end: %p A360784 b:= proc(n, i) option remember; expand(`if`(n=0, 1, %p A360784 `if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i)))) %p A360784 end: %p A360784 a:= n-> coeff(b(2*n$2), x, n): %p A360784 seq(a(n), n=0..35); %t A360784 h[n_, i_] := h[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, h[n, i - 1] + x*h[n - i, Min[n - i, i - 1]]]]]; %t A360784 g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Coefficient[h[n, n], x, i] + k - 1, k], {k, 0, j}]]]]; %t A360784 b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*g[i, i, j], {j, 0, n/i}]]]]; %t A360784 a[n_] := Coefficient[b[2 n, 2 n], x, n]; %t A360784 Table[a[n], {n, 0, 35}] (* _Jean-François Alcover_, Nov 21 2023, after _Alois P. Heinz_ *) %Y A360784 Cf. A000009, A360763, A360785. %K A360784 nonn %O A360784 0,3 %A A360784 _Alois P. Heinz_, Feb 20 2023