cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360790 Squared length of diagonal of right trapezoid with three consecutive prime length sides.

This page as a plain text file.
%I A360790 #76 Mar 11 2023 06:22:13
%S A360790 8,13,41,53,137,173,305,397,533,877,977,1373,1697,1885,2245,2813,3517,
%T A360790 3737,4493,5077,5345,6277,6953,7937,9413,10217,10613,11465,12077,
%U A360790 12785,16165,17165,18869,19325,22237,22837,24665,26605,27925,29933,32141,32765,36497,37253,38953,39745
%N A360790 Squared length of diagonal of right trapezoid with three consecutive prime length sides.
%C A360790 The value d is the square of the length of the diagonal of a trapezoid with a height and bases that are consecutive primes, respectively.  The diagonal length is calculated using the Pythagorean theorem, but this distance is squared so that the value is an integer.
%H A360790 Aaron T Cowan, <a href="/A360790/b360790.txt">Table of n, a(n) for n = 1..500</a>
%F A360790 a(n) = prime(n)^2 + (prime(n+2)-prime(n+1))^2.
%F A360790 a(n) = A001248(n) + A076821(n+1). - _Michel Marcus_, Feb 23 2023
%e A360790         p(2)=3
%e A360790         _ _ _ _
%e A360790 a(1):  |        \  d^2=2^2+(5-3)^2=8
%e A360790 p(1)=2 |_ _ _ _ _\
%e A360790         p(3)=5
%e A360790         p(3)=5
%e A360790         _ _ _ _ _ _
%e A360790 a(2):  |           \    d^2=3^2 + (7-5)^2 = 9+4 = 13
%e A360790 p(2)=3 |            \
%e A360790        |_ _ _ _ _ _ _\
%e A360790         p(4)=7
%e A360790 a(3)= 5^2+(11-7)^2 = 25+16 = 41
%e A360790 a(7)= 17^2+(23-19)^2=305 = 5*61
%t A360790 Map[(#[[1]]^2 + (#[[3]] - #[[2]])^2) &, Partition[Prime[Range[50]], 3, 1]] (* _Amiram Eldar_, Feb 24 2023 *)
%o A360790 (MATLAB) %shorter 1 line version
%o A360790 arrayfun(@(p) p^2+(nextprime(nextprime(p+1)+1)-nextprime(p+1))^2,[primes(10^6)])
%o A360790 (PARI) a(n) = prime(n)^2 + (prime(n+2)-prime(n+1))^2; \\ _Michel Marcus_, Feb 23 2023
%Y A360790 Cf. A001248, A076821.
%Y A360790 Cf. A131019, A106171.
%K A360790 nonn
%O A360790 1,1
%A A360790 _Aaron T Cowan_, Feb 20 2023