cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360795 Expansion of Sum_{k>0} x^k / (1 - (k * x)^k)^(k+1).

This page as a plain text file.
%I A360795 #15 Aug 02 2023 02:00:05
%S A360795 1,3,4,17,6,211,8,1929,7300,22601,12,1724809,14,6703047,223678576,
%T A360795 738787345,18,65630598229,20,2119646503661,24448573943662,
%U A360795 3423809253371,24,21453113652593665,12016296386718776,4240253019018225,8255251542208471048,67251293544533119589,30
%N A360795 Expansion of Sum_{k>0} x^k / (1 - (k * x)^k)^(k+1).
%F A360795 a(n) = Sum_{d|n} d^(n-d) * binomial(d+n/d-1,d).
%F A360795 If p is prime, a(p) = 1 + p.
%t A360795 a[n_] := DivisorSum[n, #^(n-#) * Binomial[# + n/# - 1, #] &]; Array[a, 30] (* _Amiram Eldar_, Aug 02 2023 *)
%o A360795 (PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-(k*x)^k)^(k+1)))
%o A360795 (PARI) a(n) = sumdiv(n, d, d^(n-d)*binomial(d+n/d-1, d));
%Y A360795 Cf. A360787, A360788.
%Y A360795 Cf. A339481, A360794.
%K A360795 nonn
%O A360795 1,2
%A A360795 _Seiichi Manyama_, Feb 21 2023