cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360798 Expansion of Sum_{k>0} x^k / (1 - (2 * x)^k)^(k+1).

This page as a plain text file.
%I A360798 #14 Aug 02 2023 02:00:08
%S A360798 1,5,13,45,81,321,449,1745,2945,9153,11265,60609,53249,230401,410625,
%T A360798 1259777,1114113,7263233,4980737,31337473,44630017,115367937,96468993,
%U A360798 937283585,551550977,2399256577,4594597889,14579646465,7784628225,89894944769,33285996545
%N A360798 Expansion of Sum_{k>0} x^k / (1 - (2 * x)^k)^(k+1).
%F A360798 a(n) = Sum_{d|n} 2^(n-d) * binomial(d+n/d-1,d).
%F A360798 If p is prime, a(p) = 1 + p * 2^(p-1).
%t A360798 a[n_] := DivisorSum[n, 2^(n-#) * Binomial[# + n/# - 1, #] &]; Array[a, 30] (* _Amiram Eldar_, Aug 02 2023 *)
%o A360798 (PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-(2*x)^k)^(k+1)))
%o A360798 (PARI) a(n) = sumdiv(n, d, 2^(n-d)*binomial(d+n/d-1, d));
%Y A360798 Cf. A360797.
%K A360798 nonn
%O A360798 1,2
%A A360798 _Seiichi Manyama_, Feb 21 2023