This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360800 #9 Mar 31 2023 15:00:14 %S A360800 1,4,7,16,19,25,28,31,64,67,73,76,79,97,100,103,112,115,121,124,127, %T A360800 256,259,265,268,271,289,292,295,304,307,313,316,319,385,388,391,400, %U A360800 403,409,412,415,448,451,457,460,463,481,484,487,496,499,505,508,511,1024 %N A360800 Numbers Sum_{i=1..2r+1} 2^k(i) such that k(1) is even and, for r > 0 and i < 2r+1, the difference k(i+1)-k(i) is > 0 and odd. %C A360800 This is a subsequence of A360799. Another description of the terms: in the base-2 representation, the number of ones is odd and all zeros are grouped in blocks of even length. %C A360800 That is why the terms less than 2^(2j+1) describe start profiles for tiling a (2j+1) X m wall with 1 X 2 dominos, see examples and A360799. %e A360800 A 5 X m wall is tiled bottom-up with dominos, start profiles: %e A360800 _ _ _ _ _ _ _ _ _ _ _ _ _ %e A360800 ___ ___| | ___| |___ ___| | | | | |___| | | | | | | | | %e A360800 |___|___|_| |___|_|___| |___|_|_|_| |_|___|_|_| |_|_|_|_|_| %e A360800 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 %e A360800 1 = a(1) 4 = a(2) 7 = a(3) 19 = a(5) 31 = a(7) %e A360800 also the mirror images of 1 (16), 19 (25) and 7 (28). %o A360800 (Maxima) %o A360800 block(kmax: 100, a:[], %o A360800 oddsum(y):= block(su1:0, su2:0, pold:0, ok: true, %o A360800 while y>0 and ok do(p:mod(y,2), y:(y-p)/2, %o A360800 if p=1 then(if pold=0 and su2=1 then ok:false, su1:1-su1, su2:0) %o A360800 elseif p=0 then su2:1-su2, pold:p), return(is(ok and su1=1))), %o A360800 for k from 1 thru kmax do if oddsum(k) then a:append(a,[k]),a); %Y A360800 Cf. A001835, A003775, A028469, A028471, A180963, A187616, A360799. %K A360800 nonn %O A360800 1,2 %A A360800 _Gerhard Kirchner_, Feb 24 2023