cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360814 Expansion of Sum_{k>=0} x^(2*k) / (1 - k*x)^(k+1).

This page as a plain text file.
%I A360814 #8 Feb 22 2023 10:20:15
%S A360814 1,0,1,2,4,10,30,98,338,1240,4877,20496,91213,426678,2090081,10702438,
%T A360814 57193760,318283388,1840036058,11026424446,68370955450,438039068726,
%U A360814 2896018310881,19733372875632,138418266287689,998363508783924,7396739279819185,56239695790595786
%N A360814 Expansion of Sum_{k>=0} x^(2*k) / (1 - k*x)^(k+1).
%F A360814 a(n) = Sum_{k=0..floor(n/2)} k^(n-2*k) * binomial(n-k,k).
%o A360814 (PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, x^(2*k)/(1-k*x)^(k+1)))
%o A360814 (PARI) a(n) = sum(k=0, n\2, k^(n-2*k)*binomial(n-k, k));
%Y A360814 Cf. A360708.
%K A360814 nonn
%O A360814 0,4
%A A360814 _Seiichi Manyama_, Feb 21 2023