A360827 Primes p, not safe primes, such that the smallest factor of (2^(p-1)-1) / 3 is equal to p.
443, 647, 1847, 2243, 2687, 2699, 6263, 6563, 7487, 7583, 8627, 8663, 9419, 9767, 10223, 11867, 12323, 13187, 13907, 14627, 14723, 14783, 17747, 17783, 19739, 20639, 20807, 21863, 22307, 23747, 24107, 24923, 25127, 26759, 27983, 29207, 29819, 30839, 31247, 32303, 34403, 34439
Offset: 1
Keywords
Examples
443 is the first term since p = 443 is the first term of A359387 that is not in A005385 (i.e., (443-1)/2 = 13*17 is not prime). 647 is the second term since p = 647 is the first term (> 443) of A359387 that is not in A005385 (i.e., (647-1)/2 = 17*19 is not prime).
Programs
-
Mathematica
q[p_] := ! PrimeQ[(p - 1)/2] && AllTrue[Range[p], ! PrimeQ[#] || PowerMod[2, p - 1, 3*p*#] > 1 &]; Select[Prime[Range[4, 4000]], q] (* Amiram Eldar, Mar 01 2023 *)
-
PARI
forprime(p=11, 40000, if(!isprime((p-1)/2), forprime(div=5, p-1, if(Mod(2, div)^(p-1)==1, next(2))); print1(p, ", ")))