cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360831 Expansion of Sum_{k>0} (k * x)^k / (1 - (k * x)^k)^(k+1).

This page as a plain text file.
%I A360831 #14 Jul 31 2023 02:25:17
%S A360831 1,6,30,308,3130,49962,823550,17107464,387617328,10058609120,
%T A360831 285311670622,8931600297696,302875106592266,11117432610599574,
%U A360831 437894531752211760,18449277498826162192,827240261886336764194,39347911865350001626164
%N A360831 Expansion of Sum_{k>0} (k * x)^k / (1 - (k * x)^k)^(k+1).
%F A360831 a(n) = Sum_{d|n} d^n * binomial(d+n/d-1,d).
%F A360831 If p is prime, a(p) = p + p^p.
%t A360831 a[n_] := DivisorSum[n, #^n * Binomial[# + n/# - 1, #] &]; Array[a, 20] (* _Amiram Eldar_, Jul 31 2023 *)
%o A360831 (PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x)^k/(1-(k*x)^k)^(k+1)))
%o A360831 (PARI) a(n) = sumdiv(n, d, d^n*binomial(d+n/d-1, d));
%Y A360831 Cf. A338661, A343574, A360795, A360824.
%K A360831 nonn
%O A360831 1,2
%A A360831 _Seiichi Manyama_, Feb 22 2023