cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360832 Expansion of Sum_{k>=0} ( k * x / (1 - (k * x)^2) )^k.

This page as a plain text file.
%I A360832 #12 Feb 23 2023 07:36:51
%S A360832 1,1,4,28,288,3855,63232,1227291,27511296,699389444,19880700928,
%T A360832 624817997477,21512488648704,805233062024021,32556682898653184,
%U A360832 1413981749074790444,65652661019642560512,3245240681196968168619,170146759140135777861632
%N A360832 Expansion of Sum_{k>=0} ( k * x / (1 - (k * x)^2) )^k.
%F A360832 a(n) = Sum_{k=0..floor(n/2)} (n-2*k)^n * binomial(n-k-1,k).
%o A360832 (PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x/(1-(k*x)^2))^k))
%o A360832 (PARI) a(n) = sum(k=0, n\2, (n-2*k)^n*binomial(n-k-1, k));
%Y A360832 Cf. A195242, A360833.
%Y A360832 Cf. A338661, A360810, A360834.
%K A360832 nonn
%O A360832 0,3
%A A360832 _Seiichi Manyama_, Feb 22 2023