cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360846 Array read by antidiagonals: T(m,n) is the number of dominating induced trees in the grid graph P_m X P_n.

This page as a plain text file.
%I A360846 #14 Feb 16 2025 08:34:04
%S A360846 1,3,3,4,8,4,4,17,17,4,4,32,65,32,4,4,66,222,222,66,4,4,130,766,1280,
%T A360846 766,130,4,4,262,2685,7629,7629,2685,262,4,4,522,9450,46032,78981,
%U A360846 46032,9450,522,4,4,1046,33158,278419,820308,820308,278419,33158,1046,4
%N A360846 Array read by antidiagonals: T(m,n) is the number of dominating induced trees in the grid graph P_m X P_n.
%C A360846 A dominating induced tree in a graph is an acyclic connected induced subgraph whose vertices are a dominating set.
%H A360846 Andrew Howroyd, <a href="/A360846/b360846.txt">Table of n, a(n) for n = 1..435</a> (first 29 antidiagonals)
%H A360846 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GridGraph.html">Grid Graph</a>.
%F A360846 T(n,m) = T(m,n).
%e A360846 Table starts:
%e A360846 =======================================================
%e A360846 m\n| 1   2    3      4       5         6          7 ...
%e A360846 ---+---------------------------------------------------
%e A360846 1  | 1   3    4      4       4         4          4 ...
%e A360846 2  | 3   8   17     32      66       130        262 ...
%e A360846 3  | 4  17   65    222     766      2685       9450 ...
%e A360846 4  | 4  32  222   1280    7629     46032     278419 ...
%e A360846 5  | 4  66  766   7629   78981    820308    8520021 ...
%e A360846 6  | 4 130 2685  46032  820308  14605388  259809527 ...
%e A360846 7  | 4 262 9450 278419 8520021 259809527 7904828158 ...
%e A360846   ...
%Y A360846 Main diagonal is A360847.
%Y A360846 Rows 1..2 are A113311(n-1), A360848.
%Y A360846 Cf. A291872 (connected dominating sets), A360202 (induced trees).
%K A360846 nonn,tabl
%O A360846 1,2
%A A360846 _Andrew Howroyd_, Feb 23 2023