This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360850 #13 Feb 16 2025 08:34:04 %S A360850 1,3,3,6,12,6,10,33,33,10,15,72,135,72,15,21,135,438,438,135,21,28, %T A360850 228,1140,2224,1140,228,28,36,357,2511,8850,8850,2511,357,36,45,528, %U A360850 4893,27480,55725,27480,4893,528,45,55,747,8700,70462,265665,265665,70462,8700,747,55 %N A360850 Array read by antidiagonals: T(m,n) is the number of (undirected) paths in the complete bipartite graph K_{m,n}. %C A360850 T(m,n) is the number of induced paths including zero length paths in the m X n rook graph. This is also the number of induced trees in these graphs since these are the only induced trees. %H A360850 Andrew Howroyd, <a href="/A360850/b360850.txt">Table of n, a(n) for n = 1..1275</a> %H A360850 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CompleteBipartiteGraph.html">Complete Bipartite Graph</a>. %H A360850 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphPath.html">Graph Path</a>. %H A360850 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RookGraph.html">Rook Graph</a>. %F A360850 T(m,n) = Sum_{j=1..min(m,n)} j!^2*binomial(m,j)*binomial(n,j)*(1 + (m+n)/2 - j). %F A360850 T(m,n) = T(n,m). %e A360850 Array begins: %e A360850 =================================================== %e A360850 m\n| 1 2 3 4 5 6 7 ... %e A360850 ---+----------------------------------------------- %e A360850 1 | 1 3 6 10 15 21 28 ... %e A360850 2 | 3 12 33 72 135 228 357 ... %e A360850 3 | 6 33 135 438 1140 2511 4893 ... %e A360850 4 | 10 72 438 2224 8850 27480 70462 ... %e A360850 5 | 15 135 1140 8850 55725 265665 962010 ... %e A360850 6 | 21 228 2511 27480 265665 2006316 11158203 ... %e A360850 7 | 28 357 4893 70462 962010 11158203 98309827 ... %e A360850 ... %o A360850 (PARI) T(m,n) = sum(j=1, min(m,n), j!^2*binomial(m,j)*binomial(n,j)*(1 + (m+n)/2 - j)) %Y A360850 Main diagonal is A288035. %Y A360850 Rows 1..2 are A000217, A054602. %Y A360850 Cf. A360849 (cycles), A360851. %K A360850 nonn,tabl %O A360850 1,2 %A A360850 _Andrew Howroyd_, Feb 23 2023