cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360856 a(n) = [x^n](1/2)*(1 + (2*x + 1)/sqrt(1 - 8*x^2*(x + 1))).

This page as a plain text file.
%I A360856 #6 Feb 28 2023 03:54:49
%S A360856 1,1,2,6,16,48,140,424,1280,3920,12032,37184,115248,358624,1118784,
%T A360856 3499584,10969344,34450944,108377984,341465344,1077300224,3403006464,
%U A360856 10761447424,34065967104,107937899264,342293526016,1086339120128,3450236511232,10965437349888
%N A360856 a(n) = [x^n](1/2)*(1 + (2*x + 1)/sqrt(1 - 8*x^2*(x + 1))).
%F A360856 a(n) = (4*(2*n^2 - 11*n + 15)*a(n - 3) + 4*(2*n^2 - 9*n + 9)*a(n - 2) + 2*(n - 3)*a(n - 1)) / (n^2 - 3*n) for n >= 4.
%p A360856 gf := (1/2)*(1 + (2*x + 1)/sqrt(1 - 8*x^2*(x + 1)));
%p A360856 ser := series(gf, x, 30): seq(coeff(ser, x, n), n = 0..28);
%p A360856 # Recurrence:
%p A360856 a := proc(n) option remember; if n < 4 then return [1, 1, 2, 6][n + 1] fi:
%p A360856 (4*(2*n^2 - 11*n + 15)*a(n - 3) + 4*(2*n^2 - 9*n + 9)*a(n - 2) + 2*(n - 3)*a(n - 1)) / (n^2 - 3*n) end: seq(a(n), n = 0..28);
%Y A360856 Cf. A360571.
%K A360856 nonn
%O A360856 0,3
%A A360856 _Peter Luschny_, Feb 28 2023