This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360857 #11 Mar 06 2023 09:51:59 %S A360857 1,1,1,1,2,6,1,3,12,12,1,4,20,30,60,1,5,30,60,150,150,1,6,42,105,315, %T A360857 420,700,1,7,56,168,588,980,1960,1960,1,8,72,252,1008,2016,4704,5880, %U A360857 8820,1,9,90,360,1620,3780,10080,15120,26460,26460 %N A360857 Triangle read by rows. T(n, k) = binomial(n, ceil(k/2)) * binomial(n + 1, floor(k/2)). %e A360857 Table T(n, k) starts: %e A360857 [0] 1; %e A360857 [1] 1, 1; %e A360857 [2] 1, 2, 6; %e A360857 [3] 1, 3, 12, 12; %e A360857 [4] 1, 4, 20, 30, 60; %e A360857 [5] 1, 5, 30, 60, 150, 150; %e A360857 [6] 1, 6, 42, 105, 315, 420, 700; %e A360857 [7] 1, 7, 56, 168, 588, 980, 1960, 1960; %e A360857 [8] 1, 8, 72, 252, 1008, 2016, 4704, 5880, 8820; %e A360857 [9] 1, 9, 90, 360, 1620, 3780, 10080, 15120, 26460, 26460. %p A360857 A360857 := (n, k) -> binomial(n, ceil(k/2))*binomial(n + 1, floor(k/2)): %p A360857 seq(seq(A360857(n, k), k=0..n), n=0..9); %t A360857 Table[Binomial[n,Ceiling[k/2]]Binomial[n+1,Floor[k/2]],{n,0,10},{k,0,n}]//Flatten (* _Harvey P. Dale_, Mar 06 2023 *) %o A360857 (Python) %o A360857 from math import comb %o A360857 def A360857_T(n,k): return comb(n+1,m:=k>>1)**2*(n+1-m)*(n-m)//((m+1)*(n+1)) if k&1 else comb(n+1,m:=k>>1)**2*(n+1-m)//(n+1) # _Chai Wah Wu_, Feb 28 2023 %Y A360857 Cf. A360858, A360859. %K A360857 nonn,tabl %O A360857 0,5 %A A360857 _Peter Luschny_, Feb 28 2023