This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360859 #11 Feb 28 2023 09:46:38 %S A360859 1,1,1,1,2,4,1,3,9,9,1,4,16,24,36,1,5,25,50,100,100,1,6,36,90,225,300, %T A360859 400,1,7,49,147,441,735,1225,1225,1,8,64,224,784,1568,3136,3920,4900, %U A360859 1,9,81,324,1296,3024,7056,10584,15876,15876,1,10,100,450,2025,5400,14400,25200,44100,52920,63504 %N A360859 Triangle read by rows. T(n, k) = binomial(n, ceil(k/2)) * binomial(n, floor(k/2)). %e A360859 Triangle T(n, k) starts: %e A360859 [0] 1; %e A360859 [1] 1, 1; %e A360859 [2] 1, 2, 4; %e A360859 [3] 1, 3, 9, 9; %e A360859 [4] 1, 4, 16, 24, 36; %e A360859 [5] 1, 5, 25, 50, 100, 100; %e A360859 [6] 1, 6, 36, 90, 225, 300, 400; %e A360859 [7] 1, 7, 49, 147, 441, 735, 1225, 1225; %e A360859 [8] 1, 8, 64, 224, 784, 1568, 3136, 3920, 4900; %e A360859 [9] 1, 9, 81, 324, 1296, 3024, 7056, 10584, 15876, 15876; %p A360859 A360859 := (n, k) -> binomial(n, ceil(k/2)) * binomial(n, floor(k/2)): %p A360859 seq(seq(A360859(n, k), k = 0..n), n = 0..10); %o A360859 (Python) %o A360859 from math import comb %o A360859 def A360859_T(n,k): return comb(n,m:=k>>1)**2*(n-m)//(m+1) if k&1 else comb(n,k>>1)**2 # _Chai Wah Wu_, Feb 28 2023 %Y A360859 Cf. A018224 (main diagonal), A360861 (row sums). %Y A360859 Cf. A360857, A360858. %K A360859 nonn,tabl %O A360859 0,5 %A A360859 _Peter Luschny_, Feb 28 2023