cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A360603 Triangle read by rows. T(n, k) = A360604(n, k) * A001187(k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 4, 0, 8, 6, 12, 38, 0, 64, 32, 48, 152, 728, 0, 1024, 320, 320, 760, 3640, 26704, 0, 32768, 6144, 3840, 6080, 21840, 160224, 1866256, 0, 2097152, 229376, 86016, 85120, 203840, 1121568, 13063792, 251548592
Offset: 0

Views

Author

Peter Luschny, Feb 20 2023

Keywords

Examples

			Triangle T(n, k) starts:
[0] 1;
[1] 0,       1;
[2] 0,       1,      1;
[3] 0,       2,      2,     4;
[4] 0,       8,      6,    12,    38;
[5] 0,      64,     32,    48,   152,    728;
[6] 0,    1024,    320,   320,   760,   3640,   26704;
[7] 0,   32768,   6144,  3840,  6080,  21840,  160224,  1866256;
[8] 0, 2097152, 229376, 86016, 85120, 203840, 1121568, 13063792, 251548592.
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973.

Crossrefs

Cf. A006125 Graphs on n labeled nodes, T(n+1, 1) and Sum_{k=0..n} T(n, k).
Cf. A054592 Disconnected labeled graphs with n nodes, Sum_{k=0..n-1} T(n, k).
Cf. A001187 Connected labeled graphs with n nodes, T(n, n).
Cf. A123903 Isolated nodes in all simple labeled graphs on n nodes, T(n+2, 2).
Cf. A053549 Labeled rooted connected graphs, T(n+1, n).
Cf. A275462 Leaves in all simple labeled connected graphs on n nodes T(n+2, n).
Cf. A060818 gcd_{k=0..n} T(n, k) = gcd(n!, 2^n).
Cf. A143543 Labeled graphs on n nodes with k connected components.
Cf. A095340 Total number of nodes in all labeled graphs on n nodes.
Cf. A360604, A360860 (accumulation triangle).

Programs

  • Maple
    T := (n, k) -> 2^binomial(n-k, 2)*binomial(n-1, k-1)*A001187(k):
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
    # Based on the recursion:
    Trow := proc(n) option remember; if n = 0 then return [1] fi;
    seq(2^binomial(n-k, 2) * binomial(n-1, k-1) * Trow(k)[k+1], k = 1..n-1);
    2^(n*(n-1)/2) - add(j, j = [%]); [0, %%, %] end:
    seq(print(Trow(n)), n = 0..8);
  • Mathematica
    A001187[n_] := A001187[n] = 2^((n - 1)*n/2) - Sum[Binomial[n - 1, k]*2^((k - n + 1)*(k - n + 2)/2)*A001187[k + 1], {k, 0, n - 2}];
    T[n_, k_] := 2^Binomial[n - k, 2]*Binomial[n - 1, k - 1]*A001187[k];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 02 2023, after Peter Luschny in A001187 *)
  • Python
    from math import comb as binomial
    from functools import cache
    @cache
    def A360603Row(n: int) -> list[int]:
        if n == 0: return [1]
        s = [2 ** (((k - n + 1) * (k - n)) // 2) * binomial(n - 1, k - 1) * A360603Row(k)[k] for k in range(1, n)]
        b = 2 ** (((n - 1) * n) // 2) - sum(s)
        return [0] + s + [b]

Formula

T(n, k) = 2^binomial(n-k, 2)*binomial(n-1, k-1) * A001187(k).
Recursion over the rows of the triangle: Set row(0) = [1] where [.] denotes a 0-based list. Assume now all rows(j) for j < n computed, next compute r = [2^binomial(n-k, 2) * binomial(n-1, k-1) * row(k)[k] for k = 1..n-1] and s = 2^(n*(n-1)/2) - Sum(r). Then row(n) = [0] & r & [s], where '&' denotes the concatenation of lists. (See the Python program for an implementation.)
T(n, n) = A001187(n) (connected labeled graphs).
T(n-1, n) = A053549(n-1) for n >= 1 (labeled rooted connected graphs).
T(n, 1) = Sum_{k>=0} T(n-1, k) = A006125(n-1) for n >= 1 (all labeled graphs).
Sum_{k=0..n-1} T(n, k) = A054592(n) for n >= 1 (disconnected labeled graphs).
See additional formulas in the cross-references.
Showing 1-1 of 1 results.