This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360861 #19 Dec 11 2023 05:43:12 %S A360861 1,2,7,22,81,281,1058,3830,14605,54127,208110,782761,3027038,11501478, %T A360861 44668692,170974710,666220005,2564271875,10018268150,38728479647, %U A360861 151631858378,588229029258,2307174835212,8975958379817,35258881445606,137501193282026,540821096592028 %N A360861 a(n) = Sum_{k=0..n} binomial(n, ceiling(k/2)) * binomial(n, floor(k/2)). %H A360861 Paolo Xausa, <a href="/A360861/b360861.txt">Table of n, a(n) for n = 0..1000</a> %F A360861 a(n) = (1/2)*(binomial(2*n+1,n)+binomial(n,floor(n/2))^2). - _Tani Akinari_, Jul 12 2023 %t A360861 A360861[n_]:=(Binomial[2n+1,n]+Binomial[n,Floor[n/2]]^2)/2; %t A360861 Array[A360861,30,0] (* _Paolo Xausa_, Dec 11 2023 *) %o A360861 (Python) %o A360861 from math import comb %o A360861 def A360861(n): return sum(comb(n,m:=k>>1)**2*(n-m)//(m+1) for k in range(1,n+1,2)) + sum(comb(n,k>>1)**2 for k in range(0,n+1,2)) # _Chai Wah Wu_, Feb 28 2023 %o A360861 (Maxima) a(n):=(1/2)*(binomial(2*n+1,n)+(binomial(n,floor(n/2)))^2); /* _Tani Akinari_, Jul 12 2023 */ %Y A360861 Row sums of A360859. %Y A360861 Cf. A001405, A018224. %K A360861 nonn %O A360861 0,2 %A A360861 _Peter Luschny_, Feb 28 2023