This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360875 #10 Feb 16 2025 08:34:04 %S A360875 1,3,3,7,9,7,15,39,39,15,31,177,325,177,31,63,783,2931,2931,783,63, %T A360875 127,3369,26077,51465,26077,3369,127,255,14199,225459,894675,894675, %U A360875 225459,14199,255,511,58977,1901725,15195897,30331861,15195897,1901725,58977,511 %N A360875 Array read by antidiagonals: T(m,n) is the number of connected dominating sets in the rook graph K_m X K_n. %H A360875 Andrew Howroyd, <a href="/A360875/b360875.txt">Table of n, a(n) for n = 1..1275</a> (first 50 antidiagonals). %H A360875 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ConnectedDominatingSet.html">Connected Dominating Set</a> %H A360875 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RookGraph.html">Rook Graph</a> %F A360875 T(m,n) = (Sum_{i=1..m} binomial(m,i) * A262307(n,i)) + (Sum_{j=1..n} binomial(n,j) * A262307(m,j)) - A262307(m,n). %F A360875 T(m,n) = T(n,m). %e A360875 Array begins: %e A360875 ======================================================= %e A360875 m\n| 1 2 3 4 5 6 ... %e A360875 ---+--------------------------------------------------- %e A360875 1 | 1 3 7 15 31 63 ... %e A360875 2 | 3 9 39 177 783 3369 ... %e A360875 3 | 7 39 325 2931 26077 225459 ... %e A360875 4 | 15 177 2931 51465 894675 15195897 ... %e A360875 5 | 31 783 26077 894675 30331861 1010163363 ... %e A360875 6 | 63 3369 225459 15195897 1010163363 66273667449 ... %e A360875 ... %o A360875 (PARI) \\ S is A183109, T is A262307, U is this sequence. %o A360875 G(M,N=M)={S=matrix(M, N); T=matrix(M, N); U=matrix(M, N); %o A360875 for(m=1, M, for(n=1, N, %o A360875 S[m, n]=sum(j=0, m, (-1)^j*binomial(m, j)*(2^(m - j) - 1)^n); %o A360875 T[m, n]=S[m, n]-sum(i=1, m-1, sum(j=1, n-1, T[i, j]*S[m-i, n-j]*binomial(m-1, i-1)*binomial(n, j))); %o A360875 U[m, n]=sum(i=1, m, binomial(m, i)*T[i, n])+sum(j=1, n, binomial(n, j)*T[m, j])-T[m, n] )); U %o A360875 } %o A360875 { my(A=G(7)); for(n=1, #A~, print(A[n,])) } %Y A360875 Main diagonal is A289196. %Y A360875 Rows 1..2 are A000225, A360876. %Y A360875 Cf. A287274, A360873. %K A360875 nonn,tabl %O A360875 1,2 %A A360875 _Andrew Howroyd_, Feb 24 2023