cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360893 G.f. satisfies A(x) = 1 + x/(1 - x^4)^2 * A(x/(1 - x^4)).

This page as a plain text file.
%I A360893 #10 Feb 25 2023 08:49:08
%S A360893 1,1,1,1,1,3,6,10,15,24,51,109,214,389,747,1595,3497,7379,15065,31750,
%T A360893 70504,159352,353748,777240,1742696,4022595,9379659,21717264,50239529,
%U A360893 117913537,281584044,676667552,1623733085,3908144320,9509212539,23393422297,57815808829
%N A360893 G.f. satisfies A(x) = 1 + x/(1 - x^4)^2 * A(x/(1 - x^4)).
%F A360893 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} binomial(n-3*k,k) * a(n-1-4*k).
%o A360893 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\4, binomial(i-3*j, j)*v[i-4*j])); v;
%Y A360893 Cf. A040027, A352864, A360892.
%Y A360893 Cf. A360891, A360901.
%K A360893 nonn
%O A360893 0,6
%A A360893 _Seiichi Manyama_, Feb 25 2023