cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360904 Numbers k such that k and k+1 both have the same number of squarefree divisors and powerful divisors.

This page as a plain text file.
%I A360904 #9 Feb 26 2023 03:26:39
%S A360904 48,2511,5328,6723,7856,10287,15471,15632,16640,18063,20816,28592,
%T A360904 33124,36368,38799,39600,40400,40816,54512,57121,60624,67472,75248,
%U A360904 79375,83024,88047,93231,101168,119375,126927,134703,137456,146688,147824,148224,154448,160624
%N A360904 Numbers k such that k and k+1 both have the same number of squarefree divisors and powerful divisors.
%C A360904 Numbers k such that k and k+1 are both terms of A360902.
%H A360904 Amiram Eldar, <a href="/A360904/b360904.txt">Table of n, a(n) for n = 1..10000</a>
%e A360904 48 is a term since A034444(48) = A005361(48) = 4 and A034444(49) = A005361(49) = 2.
%t A360904 q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Times @@ e == 2^Length[e]]; q[1] = True; seq[kmax_] := Module[{s = {}, k = 1, q1 = q[1], q2}, Do[q2 = q[k]; If[q1 && q2, AppendTo[s, k-1]]; q1 = q2, {k, 2, kmax}]; s]; seq[2*10^5]
%o A360904 (PARI) is(k) = {my(e = factor(k)[,2]); prod(i = 1, #e, e[i]) == 2^#e; }
%o A360904 lista(kmax) = {my(is1 = is(1), i2); for(k=2, kmax, is2 = is(k); if(is1 && is2, print1(k-1, ", ")); is1 = is2); }
%Y A360904 Subsequence of A360902.
%Y A360904 A360905 is a subsequence.
%Y A360904 Cf. A005361, A034444.
%K A360904 nonn
%O A360904 1,1
%A A360904 _Amiram Eldar_, Feb 25 2023