This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360905 #9 Feb 26 2023 03:26:50 %S A360905 7939375,12799375,20410623,30466287,56661199,83365119,105146991, %T A360905 197479375,235838223,259360623,293380623,555499375,657880623, %U A360905 691579375,871374591,871720623,953280495,975079375,996393391,1032100623,1047979375,1096579375,1348000623,1355419375 %N A360905 Starts of run of 3 consecutive integers that are all terms of A360902. %H A360905 Amiram Eldar, <a href="/A360905/b360905.txt">Table of n, a(n) for n = 1..300</a> %e A360905 7939375 is a term since A034444(7939375) = A005361(7939375) = 4, A034444(7939376) = A005361(7939376) = 4, and A034444(7939377) = A005361(7939377) = 4. %t A360905 q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Times @@ e == 2^Length[e]]; q[1] = True; seq[kmax_] := Module[{tri = q /@ Range[3], s = {}, k = 4}, While[k < kmax, If[And @@ tri, AppendTo[s, k - 3]]; tri = Join[Rest[tri], {q[k]}]; k++]; s]; seq[10^7] %o A360905 (PARI) is(k) = {my(e = factor(k)[,2]); prod(i = 1, #e, e[i]) == 2^#e; } %o A360905 lista(kmax) = {my(tri = vector(3, i, is(i)), k = 4); while(k < kmax, if(vecsum(tri) == 3, print1(k-3, ", ")); tri = concat(vecextract(tri, "^1"), is(k)); k++); } %Y A360905 Subsequence of A360902 and A360903. %Y A360905 Cf. A005361, A034444. %K A360905 nonn %O A360905 1,1 %A A360905 _Amiram Eldar_, Feb 25 2023