This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360907 #9 Feb 26 2023 03:26:43 %S A360907 916352,3002751,13080447,22598271,26110592,28909952,45706112,49472127, %T A360907 52890624,53391231,56190591,58471552,63468927,65148543,67947903, %U A360907 69780608,84744063,89376128,93142143,94974848,143530623,143683712,145770111,155847807,165925503,177109375 %N A360907 Numbers k such that k and k+1 both have the same number of cubefree divisors and 3-full divisors. %C A360907 Numbers k such that k and k+1 are both terms of A360906. %H A360907 Amiram Eldar, <a href="/A360907/b360907.txt">Table of n, a(n) for n = 1..1000</a> %e A360907 48 is a term since A073184(916352) = A190867(916352) = 6 and A073184(916353) = A190867(916353) = 6. %t A360907 q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Times @@ (Min[#, 3] & /@ (e + 1)) == Times @@ (Max[#, 1] & /@ (e - 1))]; q[1] = True; seq[kmax_] := Module[{s = {}, k = 1, q1 = q[1], q2}, Do[q2 = q[k]; If[q1 && q2, AppendTo[s, k-1]]; q1 = q2, {k, 2, kmax}]; s]; seq[2*10^5] %o A360907 (PARI) is(k) = {my(e = factor(k)[,2]); prod(i = 1, #e, min(e[i] + 1, 3)) == prod(i = 1, #e, max(e[i] - 1, 1)); } %o A360907 lista(kmax) = {my(is1 = is(1), i2); for(k=2, kmax, is2 = is(k); if(is1 && is2, print1(k-1, ", ")); is1 = is2); } %Y A360907 Subsequence of A360906. %Y A360907 Cf. A073184, A190867. %K A360907 nonn %O A360907 1,1 %A A360907 _Amiram Eldar_, Feb 25 2023