cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360924 Smallest number of moves needed to win Integer Lunar Lander with starting position (0,n).

This page as a plain text file.
%I A360924 #35 Mar 02 2023 06:21:21
%S A360924 0,2,3,4,4,5,5,6,6,6,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,10,11,11,11,11,
%T A360924 11,12,12,12,12,12,12,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15,15,
%U A360924 15,15,15,15,16,16,16,16,16,16,16,16,17,17,17,17,17,17,17,17,18,18,18
%N A360924 Smallest number of moves needed to win Integer Lunar Lander with starting position (0,n).
%C A360924 See A360923 for game rules.
%C A360924 Data provided by _Tom Karzes_.
%C A360924 It appears that a(n) = 1 + floor(sqrt(4*n-3)) for n>0 (which is essentially A000267 and A027434). - _N. J. A. Sloane_, Feb 25 2023 [This is proved by Casteigts, Raffinot, and Schoeters (2020) in the form a(n) = ceiling(2*sqrt(n)). - _Pontus von Brömssen_, Mar 01 2023]
%H A360924 Tom Karzes, <a href="/A360924/b360924.txt">Table of n, a(n) for n = 0..484</a>
%H A360924 Arnaud Casteigts, Mathieu Raffinot, and Jason Schoeters, <a href="https://arxiv.org/abs/2006.03666">VectorTSP: A Traveling Salesperson Problem with Racetrack-like acceleration constraints</a>, arXiv:2006.03666 [cs.DS], 2020. See Lemma 7.
%e A360924 From (0,6), a 5-move solution is (-1,5), (-2,3), (-2,1), (-1,0), (0,0). There is no shorter solution, so a(6) = 5.
%Y A360924 Top row of table A360923. Cf. A360925, A360926.
%Y A360924 See also A000267 and A027434.
%K A360924 nonn
%O A360924 0,2
%A A360924 _Allan C. Wechsler_, Feb 25 2023