cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360927 Expansion of the g.f. x*(1 + 3*x + 4*x^2 + 4*x^3)/((1 - x)^2*(1 + x)).

This page as a plain text file.
%I A360927 #30 Feb 27 2023 02:17:29
%S A360927 0,1,4,9,16,21,28,33,40,45,52,57,64,69,76,81,88,93,100,105,112,117,
%T A360927 124,129,136,141,148,153,160,165,172,177,184,189,196,201,208,213,220,
%U A360927 225,232,237,244,249,256,261,268,273,280,285,292,297,304,309,316,321,328
%N A360927 Expansion of the g.f. x*(1 + 3*x + 4*x^2 + 4*x^3)/((1 - x)^2*(1 + x)).
%C A360927 The sequence gives the number of "ON" cells in the cellular automaton on a quadrant of a square grid after the n-th stage, where the "ON" cells lie only on the perimeter and the two diagonals of the square.
%H A360927 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).
%F A360927 a(n) = a(n-1) + a(n-2) - a(n-3) for n > 4.
%F A360927 a(0) = 0, a(1) = 1, a(n) = 6*n - 8 for n even, and a(n) = 6*n - 9 for n odd.
%F A360927 E.g.f.: 4*(x + 2) + (6*x - 8)*cosh(x) + (6*x - 9)*sinh(x).
%F A360927 a(2*n) = A017569(n-1) = 4*A016777(n-1).
%F A360927 a(2*n+1) = A017629(n-1).
%e A360927 Illustrations for n = 1..8:
%e A360927       o          o o          o o o
%e A360927                  o o          o o o
%e A360927                               o o o
%e A360927   a(1) = 1    a(2) = 4      a(3) = 9
%e A360927    o o o o    o o o o o    o o o o o o
%e A360927    o o o o    o o   o o    o o     o o
%e A360927    o o o o    o   o   o    o   o o   o
%e A360927    o o o o    o o   o o    o   o o   o
%e A360927               o o o o o    o o     o o
%e A360927                            o o o o o o
%e A360927   a(4) = 16   a(5) = 21     a(6) = 28
%e A360927    o o o o o o o       o o o o o o o o
%e A360927    o o       o o       o o         o o
%e A360927    o   o   o   o       o   o     o   o
%e A360927    o     o     o       o     o o     o
%e A360927    o   o   o   o       o     o o     o
%e A360927    o o       o o       o   o     o   o
%e A360927    o o o o o o o       o o         o o
%e A360927                        o o o o o o o o
%e A360927      a(7) = 33            a(8) = 40
%t A360927 LinearRecurrence[{1,1,-1},{0,1,4,9,16},57]
%Y A360927 Cf. A194274, A016777, A017569, A017629.
%K A360927 nonn,easy
%O A360927 0,3
%A A360927 _Stefano Spezia_, Feb 25 2023