This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360927 #30 Feb 27 2023 02:17:29 %S A360927 0,1,4,9,16,21,28,33,40,45,52,57,64,69,76,81,88,93,100,105,112,117, %T A360927 124,129,136,141,148,153,160,165,172,177,184,189,196,201,208,213,220, %U A360927 225,232,237,244,249,256,261,268,273,280,285,292,297,304,309,316,321,328 %N A360927 Expansion of the g.f. x*(1 + 3*x + 4*x^2 + 4*x^3)/((1 - x)^2*(1 + x)). %C A360927 The sequence gives the number of "ON" cells in the cellular automaton on a quadrant of a square grid after the n-th stage, where the "ON" cells lie only on the perimeter and the two diagonals of the square. %H A360927 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1). %F A360927 a(n) = a(n-1) + a(n-2) - a(n-3) for n > 4. %F A360927 a(0) = 0, a(1) = 1, a(n) = 6*n - 8 for n even, and a(n) = 6*n - 9 for n odd. %F A360927 E.g.f.: 4*(x + 2) + (6*x - 8)*cosh(x) + (6*x - 9)*sinh(x). %F A360927 a(2*n) = A017569(n-1) = 4*A016777(n-1). %F A360927 a(2*n+1) = A017629(n-1). %e A360927 Illustrations for n = 1..8: %e A360927 o o o o o o %e A360927 o o o o o %e A360927 o o o %e A360927 a(1) = 1 a(2) = 4 a(3) = 9 %e A360927 o o o o o o o o o o o o o o o %e A360927 o o o o o o o o o o o o %e A360927 o o o o o o o o o o o %e A360927 o o o o o o o o o o o o %e A360927 o o o o o o o o o %e A360927 o o o o o o %e A360927 a(4) = 16 a(5) = 21 a(6) = 28 %e A360927 o o o o o o o o o o o o o o o %e A360927 o o o o o o o o %e A360927 o o o o o o o o %e A360927 o o o o o o o %e A360927 o o o o o o o o %e A360927 o o o o o o o o %e A360927 o o o o o o o o o o o %e A360927 o o o o o o o o %e A360927 a(7) = 33 a(8) = 40 %t A360927 LinearRecurrence[{1,1,-1},{0,1,4,9,16},57] %Y A360927 Cf. A194274, A016777, A017569, A017629. %K A360927 nonn,easy %O A360927 0,3 %A A360927 _Stefano Spezia_, Feb 25 2023