This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360928 #20 Jan 05 2025 19:51:42 %S A360928 6,8,6,6,3,8,5,6,5,6,8,1,2,6,0,6,3,9,3,9,6,5,5,6,7,6,5,6,7,0,5,6,5,9, %T A360928 6,1,0,1,8,6,9,0,3,1,2,3,8,2,1,8,1,6,1,6,4,9,8,1,2,5,0,3,3,1,2,9,4,3, %U A360928 5,1,0,5,3,3,3,5,5,3,2,5,3,8,2,1,4,9,1,8,7,5,5,2,8,4,8,8,4,8,0,9,1,5,7,1,9 %N A360928 Decimal expansion of Sum_{i>=0} 1/(phi^(4*i+2) - 1) where phi = (1+sqrt(5))/2 is the golden ratio. %H A360928 Kevin Ryde, <a href="/A360928/b360928.txt">Table of n, a(n) for n = 0..10000</a> %H A360928 W. E. Greig, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/15-1/greig2.pdf">Sums of Fibonacci Reciprocals</a>, The Fibonacci Quarterly, Vol. 15, No. 1, February 1977, pp. 46-48 (see equation (15)). %F A360928 Equals Sum_{j>=1} phi^(2*j)/(phi^(4*j) - 1) [Greig, equation (15)]. %F A360928 Equals A153386 / sqrt(5) [Greig, equations (13) and (14)]. %e A360928 0.68663856568126063939655676567056596... %t A360928 RealDigits[Sum[1/(GoldenRatio^(4*i + 2) - 1), {i, 0, Infinity}], 10, 105][[1]] (* _Amiram Eldar_, Feb 26 2023 *) %t A360928 RealDigits[(Log[(5 + 3*Sqrt[5])/2] + QPolyGamma[0, 1/2, (7 + 3*Sqrt[5])/2]) / Log[(7 - 3*Sqrt[5])/2], 10, 105][[1]] (* _Vaclav Kotesovec_, Feb 26 2023 *) %o A360928 (PARI) sumpos(i=0, 1/(((1+sqrt(5))/2)^(4*i+2) - 1)) \\ _Michel Marcus_, Feb 26 2023 %Y A360928 Cf. A001622 (phi), A153386. %K A360928 cons,nonn %O A360928 0,1 %A A360928 _Kevin Ryde_, Feb 25 2023