cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360935 Expansion of e.g.f. Sum_{k>=0} exp((k^k - 1)*x) * x^k/k!.

This page as a plain text file.
%I A360935 #10 Feb 26 2023 08:42:33
%S A360935 1,1,1,10,159,8306,1346855,801620870,2064941077199,20691706495244482,
%T A360935 1137052204448926181679,255128692791512749880418782,
%U A360935 348784909594653094321340422905383,2262992285674206001784964011734257207938
%N A360935 Expansion of e.g.f. Sum_{k>=0} exp((k^k - 1)*x) * x^k/k!.
%F A360935 G.f.: Sum_{k>=0} x^k/(1 - (k^k - 1)*x)^(k+1).
%F A360935 a(n) = Sum_{k=0..n} (k^k - 1)^(n-k) * binomial(n,k).
%o A360935 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1+x+sum(k=2, N, exp((k^k-1)*x)*x^k/k!)))
%o A360935 (PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(k^k-1)*x)^(k+1)))
%o A360935 (PARI) a(n) = sum(k=0, n, (k^k-1)^(n-k)*binomial(n, k));
%Y A360935 Cf. A001831, A360933, A360934.
%Y A360935 Cf. A355464.
%K A360935 nonn,easy
%O A360935 0,4
%A A360935 _Seiichi Manyama_, Feb 26 2023