This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360939 #33 Feb 16 2025 08:34:04 %S A360939 1,2,16,212,4016,99952,3096448,115063328,4993598464,248071645952, %T A360939 13888585800704,865481914527232,59426130052458496,4458258196636276736, %U A360939 362864617248019800064,31848507841521274769408,2998685833332127139299328,301504120063370711801724928 %N A360939 E.g.f. satisfies A(x) = exp( 2*x*A(x) / (1-x) ). %H A360939 Winston de Greef, <a href="/A360939/b360939.txt">Table of n, a(n) for n = 0..342</a> %H A360939 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>. %F A360939 a(n) = n! * Sum_{k=0..n} 2^k * (k+1)^(k-1) * binomial(n-1,n-k)/k!. %F A360939 E.g.f.: exp ( -LambertW(-2*x/(1-x)) ). %F A360939 E.g.f.: -(1-x)/(2*x) * LambertW(-2*x/(1-x)). %F A360939 a(n) ~ (1 + 2*exp(1))^(n + 1/2) * n^(n-1) / (sqrt(2) * exp(n - 1/2)). - _Vaclav Kotesovec_, Nov 10 2023 %o A360939 (PARI) a(n) = n!*sum(k=0, n, 2^k*(k+1)^(k-1)*binomial(n-1, n-k)/k!); %o A360939 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x/(1-x))))) %o A360939 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(-(1-x)/(2*x)*lambertw(-2*x/(1-x)))) %Y A360939 Cf. A052868, A361212. %Y A360939 Cf. A361065. %K A360939 nonn %O A360939 0,2 %A A360939 _Seiichi Manyama_, Mar 04 2023