A360940 Numbers k such that k / A000005(k) + k / A000010(k) is an integer.
1, 2, 3, 8, 10, 12, 18, 21, 24, 28, 36, 72, 78, 96, 108, 126, 128, 168, 224, 243, 288, 294, 384, 392, 756, 864, 930, 972, 1000, 1152, 1323, 1350, 1944, 2310, 2430, 2530, 2808, 3087, 3456, 4116, 6144, 6912, 7776, 10206, 10584, 13122, 13230, 13500, 13608, 18432
Offset: 1
Keywords
Examples
k = 1: 1 / A000005(1) + 1 / A000010(1) = 2, thus k = 1 is a term. k = 2: 2 / A000005(2) + 2 / A000010(2) = 3, thus k = 2 is a term. k = 3: 3 / A000005(3) + 3 / A000010(3) = 3, thus k = 3 is a term. and so on.
Programs
-
Mathematica
Select[Range[10^4], IntegerQ[#/DivisorSigma[0, #] + #/EulerPhi[#]] &] (* Amiram Eldar, Feb 26 2023 *)
-
Python
from math import prod from itertools import count, islice from sympy import factorint def A360940_gen(startvalue=1): # generator of terms >= startvalue for k in count(max(startvalue,1)): f = factorint(k) t = prod(p**(e-1)*(p-1) for p, e in f.items()) s = prod(e+1 for e in f.values()) if not k*(s+t)%(s*t): yield k A360940_list = list(islice(A360940_gen(),20)) # Chai Wah Wu, Mar 14 2023
Comments