cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360953 Numbers whose right half of prime indices (exclusive) adds up to half the total sum of prime indices.

This page as a plain text file.
%I A360953 #7 Mar 09 2023 23:08:36
%S A360953 1,4,9,12,16,25,30,48,49,63,64,70,81,108,121,154,165,169,192,256,270,
%T A360953 273,286,289,325,361,442,529,561,567,595,625,646,675,729,741,750,768,
%U A360953 841,874,931,961,972,1024,1045,1173,1334,1369,1495,1575,1653,1681,1750
%N A360953 Numbers whose right half of prime indices (exclusive) adds up to half the total sum of prime indices.
%C A360953 Also numbers whose left half of prime indices (inclusive) adds up to half the total sum of prime indices.
%C A360953 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e A360953 The terms together with their prime indices begin:
%e A360953      1: {}
%e A360953      4: {1,1}
%e A360953      9: {2,2}
%e A360953     12: {1,1,2}
%e A360953     16: {1,1,1,1}
%e A360953     25: {3,3}
%e A360953     30: {1,2,3}
%e A360953     48: {1,1,1,1,2}
%e A360953     49: {4,4}
%e A360953     63: {2,2,4}
%e A360953     64: {1,1,1,1,1,1}
%e A360953     70: {1,3,4}
%e A360953     81: {2,2,2,2}
%e A360953    108: {1,1,2,2,2}
%e A360953 For example, the prime indices of 1575 are {2,2,3,3,4}, with right half (exclusive) {3,4}, with sum 7, and the total sum of prime indices is 14, so 1575 is in the sequence.
%t A360953 Select[Range[100],With[{w=Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]},Total[Take[w,-Floor[Length[w]/2]]]==Total[w]/2]&]
%Y A360953 The left version is A056798.
%Y A360953 The inclusive version is A056798.
%Y A360953 These partitions are counted by A360674.
%Y A360953 The left inclusive version is A360953 (this sequence).
%Y A360953 A112798 lists prime indices, length A001222, sum A056239, median* A360005.
%Y A360953 First for prime indices, second for partitions, third for prime factors:
%Y A360953 - A360676 gives left sum (exclusive), counted by A360672, product A361200.
%Y A360953 - A360677 gives right sum (exclusive), counted by A360675, product A361201.
%Y A360953 - A360678 gives left sum (inclusive), counted by A360675, product A347043.
%Y A360953 - A360679 gives right sum (inclusive), counted by A360672, product A347044.
%Y A360953 Cf. A000005, A000040, A001248, A026424, A359912, A360006, A360616, A360617, A360671, A360673.
%K A360953 nonn
%O A360953 1,2
%A A360953 _Gus Wiseman_, Mar 09 2023