This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360955 #10 Mar 13 2023 17:47:26 %S A360955 1,1,2,3,4,6,7,11,12,19,20,31,33,49,51,77,79,112,124,165,177,247,260, %T A360955 340,388,480,533,693,747,925,1078,1271,1429,1772,1966,2331,2705,3123, %U A360955 3573,4245,4737,5504,6424,7254,8256,9634,10889,12372,14251,16031,18379 %N A360955 Number of finite sets of positive integers whose right half (inclusive) sums to n. %H A360955 Andrew Howroyd, <a href="/A360955/b360955.txt">Table of n, a(n) for n = 0..1000</a> %F A360955 a(n) = Sum_{w>=1} Sum_{h=w..floor((n-binomial(w,2))/w)} binomial(h,w) * A072233(n - w*h - binomial(w,2), w-1) for n > 0. - _Andrew Howroyd_, Mar 13 2023 %e A360955 The a(1) = 1 through a(8) = 12 sets: %e A360955 {1} {2} {3} {4} {5} {6} {7} {8} %e A360955 {1,2} {1,3} {1,4} {1,5} {1,6} {1,7} {1,8} %e A360955 {2,3} {2,4} {2,5} {2,6} {2,7} {2,8} %e A360955 {3,4} {3,5} {3,6} {3,7} {3,8} %e A360955 {4,5} {4,6} {4,7} {4,8} %e A360955 {1,2,3} {5,6} {5,7} {5,8} %e A360955 {1,2,4} {6,7} {6,8} %e A360955 {1,2,5} {7,8} %e A360955 {1,3,4} {1,2,6} %e A360955 {2,3,4} {1,3,5} %e A360955 {1,2,3,4} {2,3,5} %e A360955 {1,2,3,5} %e A360955 For example, the set y = {2,3,5} has right half (inclusive) {3,5}, with sum 8, so y is counted under a(8). %t A360955 Table[Length[Select[Join@@IntegerPartitions/@Range[0,3*k], UnsameQ@@#&&Total[Take[#,Ceiling[Length[#]/2]]]==k&]],{k,0,15}] %o A360955 (PARI) \\ P(n,k) is A072233(n,k). %o A360955 P(n,k)=polcoef(1/prod(k=1, k, 1 - x^k + O(x*x^n)), n) %o A360955 a(n)=if(n==0, 1, sum(w=1, sqrt(n), my(t=binomial(w,2)); sum(h=w, (n-t)\w, binomial(h, w) * P(n-w*h-t, w-1)))) \\ _Andrew Howroyd_, Mar 13 2023 %Y A360955 The version for multisets is A360671, exclusive A360673. %Y A360955 The exclusive version is A360954. %Y A360955 First for prime indices, second for partitions, third for prime factors: %Y A360955 - A360676 gives left sum (exclusive), counted by A360672, product A361200. %Y A360955 - A360677 gives right sum (exclusive), counted by A360675, product A361201. %Y A360955 - A360678 gives left sum (inclusive), counted by A360675, product A347043. %Y A360955 - A360679 gives right sum (inclusive), counted by A360672, product A347044. %Y A360955 Cf. A000009, A072233, A359893, A359901, A360674, A360956. %K A360955 nonn %O A360955 0,3 %A A360955 _Gus Wiseman_, Mar 09 2023 %E A360955 Terms a(16) and beyond from _Andrew Howroyd_, Mar 13 2023