cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360955 Number of finite sets of positive integers whose right half (inclusive) sums to n.

This page as a plain text file.
%I A360955 #10 Mar 13 2023 17:47:26
%S A360955 1,1,2,3,4,6,7,11,12,19,20,31,33,49,51,77,79,112,124,165,177,247,260,
%T A360955 340,388,480,533,693,747,925,1078,1271,1429,1772,1966,2331,2705,3123,
%U A360955 3573,4245,4737,5504,6424,7254,8256,9634,10889,12372,14251,16031,18379
%N A360955 Number of finite sets of positive integers whose right half (inclusive) sums to n.
%H A360955 Andrew Howroyd, <a href="/A360955/b360955.txt">Table of n, a(n) for n = 0..1000</a>
%F A360955 a(n) = Sum_{w>=1} Sum_{h=w..floor((n-binomial(w,2))/w)} binomial(h,w) * A072233(n - w*h - binomial(w,2), w-1) for n > 0. - _Andrew Howroyd_, Mar 13 2023
%e A360955 The a(1) = 1 through a(8) = 12 sets:
%e A360955   {1}  {2}    {3}    {4}    {5}      {6}      {7}        {8}
%e A360955        {1,2}  {1,3}  {1,4}  {1,5}    {1,6}    {1,7}      {1,8}
%e A360955               {2,3}  {2,4}  {2,5}    {2,6}    {2,7}      {2,8}
%e A360955                      {3,4}  {3,5}    {3,6}    {3,7}      {3,8}
%e A360955                             {4,5}    {4,6}    {4,7}      {4,8}
%e A360955                             {1,2,3}  {5,6}    {5,7}      {5,8}
%e A360955                                      {1,2,4}  {6,7}      {6,8}
%e A360955                                               {1,2,5}    {7,8}
%e A360955                                               {1,3,4}    {1,2,6}
%e A360955                                               {2,3,4}    {1,3,5}
%e A360955                                               {1,2,3,4}  {2,3,5}
%e A360955                                                          {1,2,3,5}
%e A360955 For example, the set y = {2,3,5} has right half (inclusive) {3,5}, with sum 8, so y is counted under a(8).
%t A360955 Table[Length[Select[Join@@IntegerPartitions/@Range[0,3*k], UnsameQ@@#&&Total[Take[#,Ceiling[Length[#]/2]]]==k&]],{k,0,15}]
%o A360955 (PARI) \\ P(n,k) is A072233(n,k).
%o A360955 P(n,k)=polcoef(1/prod(k=1, k, 1 - x^k + O(x*x^n)), n)
%o A360955 a(n)=if(n==0, 1, sum(w=1, sqrt(n), my(t=binomial(w,2)); sum(h=w, (n-t)\w, binomial(h, w) * P(n-w*h-t, w-1)))) \\ _Andrew Howroyd_, Mar 13 2023
%Y A360955 The version for multisets is A360671, exclusive A360673.
%Y A360955 The exclusive version is A360954.
%Y A360955 First for prime indices, second for partitions, third for prime factors:
%Y A360955 - A360676 gives left sum (exclusive), counted by A360672, product A361200.
%Y A360955 - A360677 gives right sum (exclusive), counted by A360675, product A361201.
%Y A360955 - A360678 gives left sum (inclusive), counted by A360675, product A347043.
%Y A360955 - A360679 gives right sum (inclusive), counted by A360672, product A347044.
%Y A360955 Cf. A000009, A072233, A359893, A359901, A360674, A360956.
%K A360955 nonn
%O A360955 0,3
%A A360955 _Gus Wiseman_, Mar 09 2023
%E A360955 Terms a(16) and beyond from _Andrew Howroyd_, Mar 13 2023