cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360963 Triangle T(n, k), n > 0, k = 0..n-1, read by rows: T(n, k) is the least e > 0 such that the binary expansions of n^e and k^e have different lengths.

This page as a plain text file.
%I A360963 #11 Mar 01 2023 02:09:13
%S A360963 1,1,1,1,1,2,1,1,1,1,1,1,1,1,4,1,1,1,1,2,2,1,1,1,1,2,2,3,1,1,1,1,1,1,
%T A360963 1,1,1,1,1,1,1,1,1,1,6,1,1,1,1,1,1,1,1,4,4,1,1,1,1,1,1,1,1,3,3,3,1,1,
%U A360963 1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,1,1,2,2,2,2,3
%N A360963 Triangle T(n, k), n > 0, k = 0..n-1, read by rows: T(n, k) is the least e > 0 such that the binary expansions of n^e and k^e have different lengths.
%C A360963 Leading zeros are ignored (and 0 is assumed to have binary length 0).
%H A360963 Rémy Sigrist, <a href="/A360963/b360963.txt">Table of n, a(n) for n = 1..10011</a> (rows for n = 1..141 flattened)
%H A360963 Rémy Sigrist, <a href="/A360963/a360963.png">Colored representation of the first 512 rows</a>
%F A360963 T(n, 0) = 1.
%F A360963 T(n, n-1) = A183200(n-1) for n > 1.
%e A360963 Triangle T(n, k) begins:
%e A360963   n\k | 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14
%e A360963   ----+-------------------------------------------------
%e A360963     1 | 1
%e A360963     2 | 1  1
%e A360963     3 | 1  1  2
%e A360963     4 | 1  1  1  1
%e A360963     5 | 1  1  1  1  4
%e A360963     6 | 1  1  1  1  2  2
%e A360963     7 | 1  1  1  1  2  2  3
%e A360963     8 | 1  1  1  1  1  1  1  1
%e A360963     9 | 1  1  1  1  1  1  1  1  6
%e A360963    10 | 1  1  1  1  1  1  1  1  4  4
%e A360963    11 | 1  1  1  1  1  1  1  1  3  3   3
%e A360963    12 | 1  1  1  1  1  1  1  1  2  2   2   2
%e A360963    13 | 1  1  1  1  1  1  1  1  2  2   2   2   3
%e A360963    14 | 1  1  1  1  1  1  1  1  2  2   2   2   3   4
%e A360963    15 | 1  1  1  1  1  1  1  1  2  2   2   2   3   4   6
%o A360963 (PARI) T(n,k) = { for (e=1, oo, if (#binary(n^e) != #binary(k^e), return (e))) }
%Y A360963 Cf. A029837, A183200, A360964.
%K A360963 nonn,base,tabl
%O A360963 1,6
%A A360963 _Rémy Sigrist_, Feb 27 2023