A360964 Triangle T(n, k), n > 0, k = 0..n-1, read by rows: T(n, k) is the least base b >= 2 where the number of digits of n and k are different.
2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 5, 6, 2, 2, 2, 2, 5, 6, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 10, 2, 2, 2, 2, 2, 2, 2, 2, 3, 10, 11, 2, 2, 2, 2, 2, 2, 2, 2, 3, 10, 11, 12, 2, 2, 2, 2, 2, 2, 2, 2, 3, 10, 11, 12, 13
Offset: 1
Examples
Triangle T(n, k) begins: n\k | 0 1 2 3 4 5 6 7 8 9 10 11 ----+-------------------------------------- 1 | 2 2 | 2 2 3 | 2 2 3 4 | 2 2 2 2 5 | 2 2 2 2 5 6 | 2 2 2 2 5 6 7 | 2 2 2 2 5 6 7 8 | 2 2 2 2 2 2 2 2 9 | 2 2 2 2 2 2 2 2 3 10 | 2 2 2 2 2 2 2 2 3 10 11 | 2 2 2 2 2 2 2 2 3 10 11 12 | 2 2 2 2 2 2 2 2 3 10 11 12
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10011
- Rémy Sigrist, Colored representation of the first 512 rows
Programs
-
PARI
T(n,k) = { for (b=2, oo, if (#digits(n,b) != #digits(k,b), return (b))) }
Formula
T(n, 0) = 2.
T(n, n-1) = A052410(n) for any n > 1.
Comments