cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360984 Triangular array read by rows. T(n,k) is the number of idempotent Boolean relation matrices on [n] with exactly k reflexive points, n >= 0, 0 <= k <= n.

This page as a plain text file.
%I A360984 #34 Mar 05 2023 11:27:39
%S A360984 1,1,1,1,6,4,1,27,66,29,1,108,780,1116,355,1,405,8020,29250,28405,
%T A360984 6942,1,1458,76110,649260,1460425,1068576,209527
%N A360984 Triangular array read by rows.  T(n,k) is the number of idempotent Boolean relation matrices on [n] with exactly k reflexive points, n >= 0, 0 <= k <= n.
%F A360984 T(n,n) = A245767(n,n) = A000798(n).
%F A360984 T(n,n-1) = A245767(n,n-1).
%F A360984 T(n,1) = n*Sum_k Sum_j binomial(n-1,k)*binomial(n-1-k,j) = A027471(n+1).
%F A360984 E.g.f. for column 1 is x*exp(x)^3.
%F A360984 E.g.f. for column 2 is x^2/2*exp(x)^3 + x^2*exp(x)^6 + x^2/2*exp(x)^7.
%F A360984 E.g.f. for column 3 is x^3/3!*exp(x)^15 + x^3/3!*exp(x)^3 + x^3*exp(x)^10 + x^3*exp(x)^12 + x^3/2!*exp(x)^7 + 2*x^3/2!*exp(x)^6 + 2*x^3/2*exp(x)^12.
%e A360984 Triangle T(n,k) begins:
%e A360984   1;
%e A360984   1,   1;
%e A360984   1,   6,    4;
%e A360984   1,  27,   66,    29;
%e A360984   1, 108,  780,  1116,   355;
%e A360984   1, 405, 8020, 29250, 28405, 6942;
%e A360984   ...
%Y A360984 Cf. A121337 (row sums), A000798 (main diagonal).
%Y A360984 Cf. A245767, A027471 (column 1).
%K A360984 nonn,hard,tabl,more
%O A360984 0,5
%A A360984 _Geoffrey Critzer_, Feb 27 2023
%E A360984 Rows 5 and 6 added by _Geoffrey Critzer_, Mar 05 2023