cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360986 Primes whose sum of decimal digits has the same set of decimal digits as the prime.

This page as a plain text file.
%I A360986 #27 Mar 06 2023 02:59:40
%S A360986 2,3,5,7,199,919,991,2999,9929,11177,11717,17117,31333,33331,71171,
%T A360986 71711,161611,616111,999499,1111333,1131133,1131331,1133131,1313311,
%U A360986 3111313,3111331,3131113,3131311,3133111,3311131,3337777,3377377,3773377,3773773,7377373,7733377,7737337,7737733,32333333
%N A360986 Primes whose sum of decimal digits has the same set of decimal digits as the prime.
%H A360986 Robert Israel, <a href="/A360986/b360986.txt">Table of n, a(n) for n = 1..10000</a>
%e A360986 a(5) = 199 is a term because 199 is prime and 1+9+9 = 19 has the same set {1,9} of decimal digits as 199.
%p A360986 dmax:= 7: # for terms with up to dmax digits
%p A360986 dsets:= proc(s, S) option remember;
%p A360986 # nondecreasing lists [x_1, ..., x_n] with sum s and set of elements S
%p A360986    local i, x1;
%p A360986    if S = {} then if s = 0 then return {[]} else return {} fi fi;
%p A360986    x1:= min(S);
%p A360986    `union`(seq(map(t -> [x1$i, op(t)], procname(s-i*x1, S minus {x1})), i=1..`if`(x1=0,dmax,floor(s/x1))))
%p A360986 end proc:
%p A360986 R:= {2,3,5,7}: count:= 4:
%p A360986 for s from 2 to 9*dmax-1 do
%p A360986   if s mod 3 = 0 then next fi;
%p A360986   ds:= convert(convert(s,base,10),set);
%p A360986   DS:= select (t -> nops(t) > 1 and nops(t) <= dmax, dsets(s,ds));
%p A360986   for r in DS do
%p A360986      for v in remove(t -> member(t[1],[0,2,4,5,6,8]) or t[-1]=0,combinat:-permute(r)) do
%p A360986        p:= add(v[i]*10^(i-1),i=1..nops(v));
%p A360986        if isprime(p) then R:= R union {p}; count:= count+1;
%p A360986       fi
%p A360986 od od od:
%p A360986 sort(convert(R,list));
%o A360986 (PARI) isok(p) = if (isprime(p), my(d=digits(p)); Set(d) == Set(digits(vecsum(d)))); \\ _Michel Marcus_, Feb 28 2023
%Y A360986 Cf. A000040, A158473.
%Y A360986 Primes in A249515.
%K A360986 nonn,base
%O A360986 1,1
%A A360986 _Robert Israel_, Feb 27 2023