This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361001 #7 Mar 02 2023 06:22:18 %S A361001 1,2,4,3,7,9,4,11,18,23,4,14,22,34,41,6,23,42,72,108 %N A361001 Triangle read by rows: T(n,k) is the number of tilings of an n X k rectangle by integer-sided rectangular pieces that cannot be rearranged to produce a different tiling of the rectangle (except rotations and reflections of the original tiling), 1 <= k <= n. %F A361001 T(n,1) = A361003(n) = A000005(n) + floor((n-1)/2). (The first term corresponds to cases where all pieces have the same size, the second to cases where there are two pieces of different sizes.) %e A361001 Triangle begins: %e A361001 n\k| 1 2 3 4 5 6 %e A361001 ---+------------------- %e A361001 1 | 1 %e A361001 2 | 2 4 %e A361001 3 | 3 7 9 %e A361001 4 | 4 11 18 23 %e A361001 5 | 4 14 22 34 41 %e A361001 6 | 6 23 42 72 108 ? %e A361001 The T(3,3) = 9 nonrearrangeable tilings of the 3 X 3 square are: %e A361001 +---+---+---+ +---+---+---+ +---+---+---+ %e A361001 | | | | | | | %e A361001 + + +---+---+---+ +---+---+---+ %e A361001 | | | | | | %e A361001 + + + + + + %e A361001 | | | | | | %e A361001 +---+---+---+ +---+---+---+ +---+---+---+ %e A361001 . %e A361001 +---+---+---+ +---+---+---+ +---+---+---+ %e A361001 | | | | | | | | | | | %e A361001 +---+---+---+ +---+---+ + +---+---+ + %e A361001 | | | | | | | | %e A361001 + + + + + + + + %e A361001 | | | | | | | | %e A361001 +---+---+---+ +---+---+---+ +---+---+---+ %e A361001 . %e A361001 +---+---+---+ +---+---+---+ +---+---+---+ %e A361001 | | | | | | | | | | %e A361001 +---+---+---+ +---+---+---+ +---+---+---+ %e A361001 | | | | | | | | | %e A361001 + +---+ +---+---+---+ +---+---+---+ %e A361001 | | | | | | | | | %e A361001 +---+---+---+ +---+---+---+ +---+---+---+ %Y A361001 Cf. A000005, A360629, A360998, A361002 (main diagonal), A361003 (first column), A361004 (second column), A361005 (third column). %K A361001 nonn,tabl,more %O A361001 1,2 %A A361001 _Pontus von Brömssen_, Feb 28 2023