cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361008 G.f.: Product_{k >= 0} ((1 + x^(2*k+1)) / (1 - x^(2*k+1)))^k.

This page as a plain text file.
%I A361008 #11 Apr 21 2023 02:49:49
%S A361008 1,0,0,2,0,4,2,6,8,10,20,18,42,40,78,92,140,192,258,382,480,728,902,
%T A361008 1334,1698,2404,3148,4292,5742,7608,10304,13430,18192,23592,31720,
%U A361008 41144,54766,71188,93762,122156,159420,207820,269380,350726,452434,587520,755446
%N A361008 G.f.: Product_{k >= 0} ((1 + x^(2*k+1)) / (1 - x^(2*k+1)))^k.
%H A361008 Vaclav Kotesovec, <a href="/A361008/b361008.txt">Table of n, a(n) for n = 0..10000</a>
%F A361008 a(n) ~ sqrt(A/(3*Pi)) * (7*zeta(3))^(11/72) * exp(3*(7*zeta(3))^(1/3) * n^(2/3)/4 - Pi^2 * n^(1/3)/(8*(7*zeta(3))^(1/3)) - 1/24 - Pi^4/(1344*zeta(3))) / (2^(3/4) * n^(47/72)), where A = A074962 is the Glaisher-Kinkelin constant.
%t A361008 Table[SeriesCoefficient[Product[((1 + x^(2*k + 1))/(1 - x^(2*k + 1)))^k, {k, 0, n}], {x, 0, n}], {n, 0, 50}]
%Y A361008 Cf. A080054, A291697, A263149, A263150.
%Y A361008 Cf. A156616, A270919.
%K A361008 nonn
%O A361008 0,4
%A A361008 _Vaclav Kotesovec_, Apr 20 2023