This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361012 #27 Jan 08 2025 02:08:39 %S A361012 1,1,1,3,1,1,1,4,3,1,1,3,1,1,1,7,1,3,1,3,1,1,1,4,3,1,4,3,1,1,1,6,1,1, %T A361012 1,9,1,1,1,4,1,1,1,3,3,1,1,7,3,3,1,3,1,4,1,4,1,1,1,3,1,1,3,12,1,1,1,3, %U A361012 1,1,1,12,1,1,3,3,1,1,1,7,7,1,1,3,1,1 %N A361012 Multiplicative with a(p^e) = sigma(e), where sigma = A000203. %H A361012 Amiram Eldar, <a href="/A361012/b361012.txt">Table of n, a(n) for n = 1..10000</a> %F A361012 Dirichlet g.f.: Product_{p prime} (1 + Sum_{e>=1} sigma(e) / p^(e*s)). %F A361012 Sum_{k=1..n} a(k) ~ c * n, where c = Product_{p prime} (1 + Sum_{e>=2} (sigma(e) - sigma(e-1)) / p^e) = 2.96008030202494141048182047811089469392843909592516341... = A361013 %t A361012 g[p_, e_] := DivisorSigma[1, e]; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100] %o A361012 (Python) %o A361012 from math import prod %o A361012 from sympy import divisor_sigma, factorint %o A361012 def A361012(n): return prod(divisor_sigma(e) for e in factorint(n).values()) # _Chai Wah Wu_, Feb 28 2023 %o A361012 (PARI) a(n) = vecprod(apply(sigma, factor(n)[, 2])); \\ _Amiram Eldar_, Jan 07 2025 %Y A361012 Cf. A000203, A049419, A145353, A072911, A327837, A327838. %K A361012 nonn,mult %O A361012 1,4 %A A361012 _Vaclav Kotesovec_, Feb 28 2023